K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:
a) Xét tứ giác $BCMN$ có:

$\widehat{BNC}=\widehat{BMC}=90^0$ mà 2 góc này cùng nhìn cạnh $BC$ nên tứ giác $BCMN$ là tgnt.

b) 

Vì $BCMN$ nội tiếp nên $\widehat{BMN}=\widehat{BCN}=\widehat{BCQ}$

Hiển nhiên $BCPQ$ là tứ giác nội tiếp nên:

$\widehat{BCQ}=\widehat{BPQ}$

$\Rightarrow \widehat{BMN}=\widehat{BPQ}$. Mà 2 góc này ở vị trí đồng vị nên $MN\parallel PQ$

c) 

Kẻ tiếp tuyến $Ax$ của $(O)$. Hiển nhiên $Ax\perp OA(1)$

Lại có:

$\widehat{xAB}=\widehat{BCA}=\widehat{BCM}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)

Mà: $\widehat{BCM}=\widehat{ANM}$ (do $BCMN$ nội tiếp)

Do đó: $\widehat{xAB}=\widehat{ANM}$. Hai góc này ở vị trí so le trong nên $xA\parallel MN(2)$
Từ $(1);(2)$ suy ra $OA\perp MN$

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Hình vẽ:

undefined

 

a: Xét ΔABC có

BM là đường cao

CN là đường cao

BM cắt CN tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

c: Xét tứ giác BCMN có \(\widehat{BNC}=\widehat{BMC}=90^0\)

nên BCMN là tứ giác nội tiếp

26 tháng 3 2018
A) góc amh=anh=90=>tứ giác amhn noi tiếp B)Góc BMC = BNC =90->tứ giác BNMC nội tiếp C)Gọi giao điểm của AO với MN là P. Kẻ đường kính AA' Chứng minh ABC đồng dạng AMN Chứng minh tứ giác PA'CM nội tiếp Mà góc MCA'=90=>MPA'=90

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: BFEC nội tiếp

=>góc HFE=góc HBC

=>góc HFE=góc HNM

=>FE//MN

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.a. chứng minh tứ giác AMHN , BCMN nội tiếp.b. Tính độ dài cung nhỏ ACc. chứng minh đường thẳng AO vuông góc MN2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cma....
Đọc tiếp

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.

a. chứng minh tứ giác AMHN , BCMN nội tiếp.

b. Tính độ dài cung nhỏ AC

c. chứng minh đường thẳng AO vuông góc MN

2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cm

a. Chứng minh tứ giác ABOC nội tiếp

b. tính độ dài đoạn thẳng AB biết AO= 10cm

c. Gọi H là trung điểm của đoạn thẳng MN, chứng minh rằng góc AHB = góc AOB

3. từ 1 điểm H nằm ngoài đường tròn tâm O vẽ 2 tiếp tuyến MP, MN ( N, P thuộc đường tròn tâm O) và cát tuyến MAB ( A, B thuộc đường tròn tâm O). Chứng minh tư giác MPON nội tiếp 1 đường

ai giúp mình giải với mình cảm ơn nhiều

0