Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có:
M là trung điểm của BC( AM là đường trung tuyến tam giác ABC)
N là trung điểm của AC(gt)
=> MN là đường trung bình của tam giác ABC
=> MN//AB
Mà AB⊥AC(tam giác ABC vuông tại A)
=> MN⊥AC(từ vuông góc đến song song)
b) Xét tam giác AMC có:
MN là đường cao ứng với cạnh AC(MN⊥AC)
MN là đường trung tuyến ứng với cạnh AC(N là trung điểm AC)
=> Tam giác AMC cân tại M
c) Ta có: Tam giác AMC cân tại M
=> AM=MC
Mà BM=MC=\(\dfrac{1}{2}BC\)( M là trung điểm BC)
=> \(AM=\dfrac{1}{2}BC\)
\(\Rightarrow2AM=BC\)
1: Xet ΔMAB co MD là phân giác
nen AD/DB=AM/MB=AM/MC
Xét ΔMCA có ME là phân giác
nên AE/EC=AM/MC=AD/DB
=>DE//BC
2: Xét ΔABM có DG//BM
nên DG/BM=AG/AM
Xét ΔACM có EG//MC
nên EG/MC=AG/AM
=>DG/BM=EG/MC
mà BM=MC
nên DG=EG
=>G là trung điểm của DE
Để G là trung điểm của AM thì ADME là hình bình hành
=>DM//AC
=>D là trung điểm của AB
=>E là trung điểm của BC
=>AM/MB=AD/DB=1
=>AM=1/2BC
=>góc BAC=90 độ
Tự vẽ hình~
Xét tam giác ABC và tam giác DFE
\(\frac{AB}{EF}=\frac{6}{12}=\frac{1}{2}\)
\(\frac{AC}{FE}=\frac{9}{18}=\frac{1}{2}\)
\(\frac{BC}{DE}=\frac{12}{24}=\frac{1}{2}\)
\(\Rightarrow\frac{AB}{DF}=\frac{AC}{FE}=\frac{BC}{DE}=\frac{1}{2}\)
=>Tam giác ABC đồng đang với tam giác DFE (c.c.c)
Câu a) và câu b) bạn biết rồi nên mình bỏ qua nha.
Câu c) nè:
OM cắt HD tại M'
Vì OM//AH(cùng vuông góc BC) và O là trung điểm AD nên M' là trung điểm HD
Tam giác ACD vuông => CD vuông góc AC => CD//BH (cùng vuông góc AC)
Chứng minh tương tự có BD//CH
Tứ giác CDBH có 2 cặp cạnh đối song song nên là hình bình hành => 2 đường chéo cắt nhau tại trung điểm mỗi đoạn => M trùng M'
=> H, M, D thẳng hàng.
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Xét tứ giác AMCI có
AM//CI
AI//MC
Do đó: AMCI là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCI là hình chữ nhật
Suy ra: AC=MI
c: Ta có: AMCI là hình chữ nhật
nên AI=MC
mà MC=MB
nên AI=MB
Xét tứ giác ABMI có
AI//MB
AI=MB
Do đó: ABMI là hình bình hành