Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,sin^2A=sinB.sinC\)
\(\Leftrightarrow\frac{a^2}{4R^2}=\frac{b}{2R}.\frac{c}{2R}\)
\(\Leftrightarrow\frac{a^2}{4R}=\frac{bc}{4R^2}\Leftrightarrow a^2=bc\)
b, Áp dụng định lý cos:
\(CosA=\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-bc}{2bc}\ge\frac{2bc-bc}{2bc}=-\frac{1}{2}\)
a) Sin (B+C) = Sin (180-A) = Sin A
b) Cos (A+B) = Cos ( 180-A) = Cos A
c) Sin (\(\dfrac{B+C}{2}\)) = Sin \(\left(\dfrac{180-A}{2}\right)\)= Sin \(\left(90^0-\dfrac{A}{2}\right)\)= Cos \(\dfrac{A}{2}\)
d) Tan \(\left(\dfrac{A+C}{2}\right)\)= Tan\(\left(\dfrac{180-B}{2}\right)\)=Tan\(\left(90^0-\dfrac{B}{2}\right)\)= Cot \(\dfrac{B}{2}\)
a) ta có : A+B+C=180=\(\pi\)
=>B+C= \(\pi\) - A
=> sin (B+C)=Sin(\(\pi\)-A)=SinA
b) tương tự:
cos( A+B)= Cos (\(\pi\)-C)=-cosC
c) ta có A+B+C =\(\pi\)=>\(\frac{A}{2}\)+\(\frac{B}{2}\)+\(\frac{C}{2}\)=\(\frac{\pi}{2}\)
=> sin (\(\frac{B+C}{2}\))=sin(\(\frac{\pi}{2}\)-\(\frac{A}{2}\))=cos(\(\frac{A}{2}\))
d) tương tự:
tan \(\frac{A+C}{2}\)=tan(\(\frac{\pi}{2}\)-\(\frac{B}{2}\))= cot\(\frac{B}{2}\)
===> đpcm