Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình như đề bài sai thì phải. Theo đề bài trên thì BH trùng với AB; CK trùng với AC
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
MB=MC(gt)
B=C(gt)
suy ra tam giác ABM=ACM(c.g.c)
b)
xét 2 tam giác vuông AHC và AKB có:
AB=AC(gt)
A(chung)
suy ra tam giác AHB=AKB(CH-GN)
suy ra AH=AK
AB=AC
BH=AB=AH
CK=AC-AK
từ tất cả nh điều trên suy ra BH=CK
c)
xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)
suy ra tam giác KBC=ACB(c.g.c)
suy ra KBC=HCB suy ra tam giác IBC cân tại I
![](https://rs.olm.vn/images/avt/0.png?1311)
b a c h e d
a) có tam giác abc cân tại a mà ah là phân giác của bac => ah cũng là đường trung truyến => bh=hc=bc/2=8/2=4cm
xét tam giác vuông ahc có \(AC^2=AH^2+HC^2=3^2+4^2=9+15=25\Rightarrow AC=5CM\)
B) xét tam giác vuông aeh và tam giác vuông adh
có ah chung ; aeh= dah ( vì tam giác abc cân mà ah là đường cao => ah là phân giác )
=> tam giác vuông aeh = tam giác vuông adh ( trường hợp cạnh huyền - góc nhọn ) => ae =ad => dpcm
c) có ae = ad ( câu a ) => tam giác aed cân => aed= aed= \(\frac{180^0-A}{2}\) (1)
có tam giác abc cân a ( đề bài ) => abc = acb = \(\frac{180^o-A}{2}\)(2)
từ (1) và (2) => aed = abc = ade=acb hay aed=abc mà 2 góc này ở vị trí so le trong
=. ed//bc
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D H A' x x/2
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
75 B A C H
Vì tam giác ABC cân tại A nên:
\(\widehat{ABC}=\widehat{ACB}=75^o\)
Áp dụng tính chất tổng ba góc trong tam giác HBC ta có:
\(\widehat{BHC}+\widehat{ACB}+\widehat{HBC}=180^o\)
\(90^o+75^0+\widehat{HBC}=180^o\)
\(165^o+\widehat{HBC}=180^o\)
\(\widehat{HBC}=180^o-165^o=15^o\)
Ta lại có: \(\widehat{ABC}=\widehat{HBA}+\widehat{HBC}\)
\(\Rightarrow\widehat{HBA}=\widehat{ABC}-\widehat{HBC}=75^o-15^o=60^o\)
Mặt khác: \(15^o=\frac{1}{4}60^o\)
Vậy nên \(\widehat{HBC}=\frac{1}{4}\widehat{HBA}\)