K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

góc FBC chung

Do đó: ΔBFC\(\sim\)ΔBDA

b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

Do đó: ΔAFH\(\sim\)ΔADB

Suy ra: AF/AD=AH/AB

hay \(AF\cdot AB=AH\cdot AD\)

c: Ta có: ΔBDA\(\sim\)ΔBFC

nên BD/BF=BA/BC

=>BD/BA=BF/BC

Xét ΔBDF và ΔBAC có

BD/BA=BF/BC

góc DBF chung

Do đó: ΔBDF\(\sim\)ΔBAC

17 tháng 7 2020

A B C D E F I M N H

Bài làm:

Ta có: \(\widehat{MAH}=\widehat{HCI}=90^0-\widehat{ABC}\left(1\right)\)

Lại có: \(\widehat{MHA}=180^0-\widehat{MHD}=180^0-\left(90^0-\widehat{DHI}\right)=90^0+\widehat{DHI}=\widehat{HIC}\left(2\right)\)

Nên \(\Delta AHM~\Delta CIH\left(g.g\right)\)vì:

\(\hept{\begin{cases}\widehat{MAH}=\widehat{HCI}\left(theo\left(1\right)\right)\\\widehat{MHA}=\widehat{HIC}\left(theo\left(2\right)\right)\end{cases}}\)

\(\Rightarrow\frac{MH}{HI}=\frac{AH}{IC}=\frac{AH}{IB}\left(3\right)\)

Tương tự ta chứng minh được: \(\Delta BHI~\Delta ANH\left(g.g\right)\)

\(\Rightarrow\frac{HN}{HI}=\frac{AH}{IB}=\frac{AH}{IC}\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\)\(\Rightarrow\frac{MH}{HI}=\frac{HN}{HI}\Rightarrow MH=HN\)

a: Xét ΔAFH vuông tại F và ΔADB vuông tại Dcó

góc FAH chung

Do đo: ΔAFH đồng dạng với ΔADB

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

c: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔBAE đồg dạg với ΔCAF

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

AH
Akai Haruma
Giáo viên
9 tháng 5 2018

Lời giải:

a)

Xét tam giác $CFB$ và $ADB$ có:

\( \left\{\begin{matrix} \widehat{CFB}=\widehat{ADB}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle CFB\sim \triangle ADB(g.g) \)

b)

Xét tam giác $AFH$ và $ADB$ có:

\( \left\{\begin{matrix} \widehat{AFH}=\widehat{ADB}=90^0\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFH\sim \triangle ADB(g.g)\)

\(\Rightarrow \frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AF.AB=AD.AH\)

c)

Xét tam giác $ABD$ và $CBF$ có:

\( \left\{\begin{matrix} \widehat{ADB}=\widehat{CFB}\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle ABD\sim \triangle CBF(g.g)\)

\(\Rightarrow \frac{AB}{CB}=\frac{BD}{BF}\)

Xét tam giác $BDF$ và $BAC$ có:

\( \left\{\begin{matrix} \text{chung góc B}\\ \frac{BD}{BF}=\frac{BA}{BC}(cmt)\end{matrix}\right.\Rightarrow \triangle BDF\sim \triangle BAC(c.g.c)\)

d) Đề sai hiển nhiên.

5 tháng 4 2016

Câu d) phải là HF.CK = HK.CF ?

a: Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔBAC

Suy ra: AH\(\perp\)BC

Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó: BHCD là hình bình hành

b: Ta có: BHCD là hình bình hành

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

hay M,H,D thẳng hàng

Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên EM=BC/2(1)

Ta có: ΔFBC vuông tại F

mà FM là đường trung tuyến

nên FM=BC/2(2)

Từ (1) và (2) suy ra ME=MF

hay ΔEMF cân tại M