K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 5 2018

Lời giải:

a)

Xét tam giác $CFB$ và $ADB$ có:

\( \left\{\begin{matrix} \widehat{CFB}=\widehat{ADB}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle CFB\sim \triangle ADB(g.g) \)

b)

Xét tam giác $AFH$ và $ADB$ có:

\( \left\{\begin{matrix} \widehat{AFH}=\widehat{ADB}=90^0\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFH\sim \triangle ADB(g.g)\)

\(\Rightarrow \frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AF.AB=AD.AH\)

c)

Xét tam giác $ABD$ và $CBF$ có:

\( \left\{\begin{matrix} \widehat{ADB}=\widehat{CFB}\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle ABD\sim \triangle CBF(g.g)\)

\(\Rightarrow \frac{AB}{CB}=\frac{BD}{BF}\)

Xét tam giác $BDF$ và $BAC$ có:

\( \left\{\begin{matrix} \text{chung góc B}\\ \frac{BD}{BF}=\frac{BA}{BC}(cmt)\end{matrix}\right.\Rightarrow \triangle BDF\sim \triangle BAC(c.g.c)\)

d) Đề sai hiển nhiên.

a: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có

góc FBC chung

Do đó: ΔBFC\(\sim\)ΔBDA

b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

Do đó: ΔAFH\(\sim\)ΔADB

Suy ra: AF/AD=AH/AB

hay \(AF\cdot AB=AH\cdot AD\)

c: Ta có: ΔBDA\(\sim\)ΔBFC

nên BD/BF=BA/BC

=>BD/BA=BF/BC

Xét ΔBDF và ΔBAC có

BD/BA=BF/BC

góc DBF chung

Do đó: ΔBDF\(\sim\)ΔBAC

a: Xét ΔAFH vuông tại F và ΔADB vuông tại Dcó

góc FAH chung

Do đo: ΔAFH đồng dạng với ΔADB

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

c: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔBAE đồg dạg với ΔCAF

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

30 tháng 5 2020

i don ' t know