K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

A B C D E F I M N H

Bài làm:

Ta có: \(\widehat{MAH}=\widehat{HCI}=90^0-\widehat{ABC}\left(1\right)\)

Lại có: \(\widehat{MHA}=180^0-\widehat{MHD}=180^0-\left(90^0-\widehat{DHI}\right)=90^0+\widehat{DHI}=\widehat{HIC}\left(2\right)\)

Nên \(\Delta AHM~\Delta CIH\left(g.g\right)\)vì:

\(\hept{\begin{cases}\widehat{MAH}=\widehat{HCI}\left(theo\left(1\right)\right)\\\widehat{MHA}=\widehat{HIC}\left(theo\left(2\right)\right)\end{cases}}\)

\(\Rightarrow\frac{MH}{HI}=\frac{AH}{IC}=\frac{AH}{IB}\left(3\right)\)

Tương tự ta chứng minh được: \(\Delta BHI~\Delta ANH\left(g.g\right)\)

\(\Rightarrow\frac{HN}{HI}=\frac{AH}{IB}=\frac{AH}{IC}\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\)\(\Rightarrow\frac{MH}{HI}=\frac{HN}{HI}\Rightarrow MH=HN\)

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng ΔADB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED

Kẻ CG//MN(G thuộc AB), CG cắt AD tại K

=>HI vuông góc CK

=>I là trựctâm của ΔHCK

=>KI vuông góc CH

=>KI//AB

=>KI//BG

=>K là trung điểm của CG

MN//GC

=>MH/GK=HN/KC

mà GK=KC

nên MH=HN

Kẻ CG//MN(G thuộc AB), CG cắt AD tại K

=>HI vuông góc CK

=>I là trựctâm của ΔHCK

=>KI vuông góc CH

=>KI//AB

=>KI//BG

=>K là trung điểm của CG

MN//GC

=>MH/GK=HN/KC

mà GK=KC

nên MH=HN

a: HC vuông góc AI

IH vuông góc HM

=>góc AIH=góc MHC(1)

góc IAH=90 độ-góc ABD

góc HCM=90 độ-góc FBC

=>góc IAH=góc HCM(2)

Từ (1), (2) suy ra ΔAHI đồng dạng với ΔCMH

b: Kẻ CG//IK(G thuộc AB), CG cắt AD tại N

=>HM vuông góc CN

=>M là trựctâm của ΔHCN

=>NM vuông góc CH

=>NM//AB

=>NM//BG

=>N là trung điểm của CG

IK//GC

=>IH/GN=HK/NC

mà GN=NC

nên IH=HK

=>H là trung điểm của IK

a: Xét ΔAFH vuông tại F và ΔADB vuông tại Dcó

góc FAH chung

Do đo: ΔAFH đồng dạng với ΔADB

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)

c: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔBAE đồg dạg với ΔCAF

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

13 tháng 10 2023

D ở đây ra vậy em?

13 tháng 10 2023

Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K

a: CK vuông góc AC

BH vuông góc AC

Do đó: CK//BH

BK vuông góc AB

CH vuông góc AB

Do đó: BK//CH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng