Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ANP và ∆CMN ta có :
AN = NC
MN = NP
ANP = MNC ( đối đỉnh)
=> ∆ANP = ∆CMB (c.g.c)
=> AP = MC ( dpcm)
=> APN = NMC ( góc tg ứng)
Mà 2 góc này ở vị trí so le trong
=> AP//MC (dpcm)
b) Xét ∆AMN và ∆CPN ta có :
AN = NC
MN = NP
ANM = PNC ( đối đỉnh)
=> ∆AMN = ∆CPN (c.g.c)
=> AM = PC
=> NAM = NCP ( tg ứng)
Mà 2 góc này ở vị trí so le trong
=> AM //PC
a/ Xét \(\Delta ANP\) và \(\Delta CNM\) có
\(AN=CN\)
\(\widehat{ANP}=\widehat{CNM}\)
\(NP=NM\)
\(\Rightarrow\Delta ANP=\Delta CNM\)
\(\Rightarrow\widehat{NAP}=\widehat{NCM}\)
\(\Rightarrow\)AP // MC
\(\Rightarrow AP=MC\)
Ap dụng định lý Pytago vào tam giác vuông \(ABC\)ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
Bạn cm 2 tam giác ANE và BCE bằng nhau(c.g.c)
=> AN = BC (2 cạnh tg ứng)
=> 2 góc: N = ECB (2 góc tg ứng)
Vị trí 2 góc trên: so le trong =>AN//BC
2 tam giác ADB và CBD bằng nhau(c.g.c)
=> AM = BC (2 cạnh tg ứng)
=> 2 góc: M = MBC (2 góc tg ứng)
Vị trí 2 góc trên: so le trong =>AM//BC
=> AM=AN=BC(cmt) (1)
=> AM//AN//BC(cmt)
Theo tiên đề Ơ-clit, với 1 điểm nằm ngoài đường thẳng chỉ vẽ được duy nhất 1 đường thẳng song song với đường thẳng đó
=> 3 điểm A,M,N thẳng hàng (2)
Từ (1) và (2) => A là TĐ của MN
a)
Xét \(\Delta\)ANP và \(\Delta\)CNM:
NA = NC
ANP^ = CNM^ (đđ)
NP = NM
\(\Rightarrow\)\(\Delta\)ANP =\(\Delta\)CNM (c.g.c)
\(\Rightarrow\) AP = CM (2 cạnh tương ứng)
\(\Rightarrow\) NAP^ = NCM^ (2 góc tương ứng)
mà NAP^ và NCM^ sole trong
\(\Rightarrow\) AP // CM
b)
Xét \(\Delta\)ANM và \(\Delta\)CNP:
NA = NC
ANM^ = CNP^ (đđ)
NM = NP
\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)CNP (c.g.c)
\(\Rightarrow\) AM = CP (2 cạnh tương ứng)
\(\Rightarrow\)NAM^ = NCP^ (2 góc tương ứng)
mà NAM^ và NCP^ sole trong
\(\Rightarrow\) AM // CP