Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAME và ΔBMC có
MA=MB
\(\widehat{AME}=\widehat{BMC}\)(hai góc đối đỉnh)
ME=MC
Do đó: ΔAME=ΔBMC
b: Xét ΔAFN và ΔCBN có
NA=NC
\(\widehat{ANF}=\widehat{CNB}\)(hai góc đối đỉnh)
NF=NB
Do đó: ΔAFN=ΔCBN
c: ΔAME=ΔBMC
=>\(\widehat{MAE}=\widehat{MBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC
d: ΔAME=ΔBMC
=>AE=BC
ΔANF=ΔCNB
=>\(\widehat{NAF}=\widehat{NCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//BC
ΔANF=ΔCNB
=>AF=CB
Ta có: AF=CB
AE=BC
Do đó: AE=AF
Ta có: AE//BC
AF//BC
AE,AF có điểm chung là A
Do đó: E,A,F thẳng hàng
mà AE=AF
nên A là trung điểm của EF
a: Xét tứ giác APCQ có
N là trung điểm của AC
N là trung điểm của PQ
Do đó: APCQ là hình bình hành
Suy ra: AQ//PC
hay AQ//BC(1)
Xét tứ giác AEBP có
M là trung điểm của AB
M là trung điểm của PE
Do đó: AEBP là hình bình hành
Suy ra: AE//BP
hay AE//BC(2)
Từ (1) và (2) suy ra E,A,Q thẳng hàng
a: Xét tứ giác ABCP có
F là trung điểm chung của AC và BP
nen ABCP là hình bình hành
Suy ra: AP//BC và AP=BC
Xét tứ giác AQBC có
E là trug điểm chung của AB và QC
nên AQBC là hình bình hành
Suy ra: AQ//BC và AQ=BC
=>AP=AQ
b: Ta có: AQ//BC
AP//BC
DO đó: P,A,Q thẳng hàng
c: Ta có: AQBC là hình bình hành
nên BQ//AC
Ta có: ABCP là hình bình hành
nên CP//AB
a: Xét ΔNAM vầ ΔNCP có
NA=NC
góc ANM=góc CNP
NM=NP
=>ΔNAM=ΔNCP
b: Xét tứ giác AMCP có
N là trung điểm chung của AC và MP
=>AMCP là hình bình hành
=>PC//AM
=>PC//AB
c: Xét ΔABCcó
M,N lần lượt là trung điểm của AB,AC
nên MN là đường trung bình
=>BC=2MN
a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
IM=IN
Do đó: ΔIMC=ΔINC