Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A =\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)
Suy ra 3A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}\)=> 2A = 3A - A = \(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2008}{3^{2007}}-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{2008}{3^{3008}}\)= \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}-\frac{2008}{3^{2008}}\)
= \(\frac{3}{2}-\frac{1}{2.3^{2007}}\)Suy ra A = \(\frac{3}{4}-\frac{1}{8.3^{2007}}\)<\(\frac{3}{4}\)(ĐPCM)
1)\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2008+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}}\)
\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)
\(\dfrac{A}{B}=\dfrac{1}{2009}\)
2) \(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)
\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(A=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)
\(A=3+3^2+3^3+...+3^{2008}\)
\(3A=3\left(3+3^2+3^3+...+3^{2008}\right)\)
\(3A=3^2+3^3+3^4+...+3^{2009}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)
\(2A=3^{2009}-3\)
\(2A+3=3x\)
\(\Rightarrow3^{2009}-3+3=3x\)
\(\Rightarrow3^{2009}=3x\)
\(\Rightarrow x=3^{2008}\)
\(A=3+3^2+3^3+............+3^{2008}\)
\(\Leftrightarrow3A=3^2+3^3+............+3^{2008}+3^{2009}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+...........+3^{2009}\right)-\left(3+3^2+..........+3^{2008}\right)\)
\(\Leftrightarrow2A=3^{2009}-3\)
\(\Leftrightarrow2A+3=3^{2009}\)
\(\Leftrightarrow3^{2009}=3^x\)
\(\Leftrightarrow x=3^{2009}\left(tm\right)\)
Vậy ..................
Câu 1:
2A=2+22+...+2201
A=2A-A=2201-1
⇒A+1=2201 là một lũy thừa.
Câu 2:
3B=32+33+...+32006
2B=3B-B=32006-3
⇒2B+3=32006 là một lũy thừa của 3(ĐPCM)
Câu 3 không rõ đề nhé!
a, \(\)\(\left|x+\dfrac{2}{3}\right|+2=\dfrac{7}{3}\)
⇔\(\left|x+\dfrac{2}{3}\right|=\dfrac{7}{3}-2\)
⇔\(\left|x+\dfrac{2}{3}\right|=\dfrac{1}{3}\)
⇔\(\left[{}\begin{matrix}x+\dfrac{2}{3}=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{3}-\dfrac{2}{3}\Rightarrow x=\dfrac{-1}{3}\\x+\dfrac{2}{3}=\dfrac{-1}{3}\Rightarrow x=\dfrac{-1}{3}-\dfrac{2}{3}\Rightarrow x=\left(-1\right)\end{matrix}\right.\)
Vậy x = \(\dfrac{-1}{3}\) hoặc x = (-1) thì \(\left|x+\dfrac{2}{3}\right|+2=\dfrac{7}{3}\)
b,
Xét \(25^{50}\) và \(5^{300}\) ta có:
\(25^{50}=\left(5^2\right)^{50}=5^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Vì \(5^{100}< 125^{100}\) nên \(25^{50}< 5^{300}\)
a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10
b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6
c2 = a2 – b2 = 25 - 9 = 16 => c = 4
Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)
Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).
b)
4x2 + 9y2 = 1 <=> x214x214 + y219y219 = 1
a2= 1414 => a = 1212 => độ dài trục lớn 2a = 1
b2 = 1919 => b = 1313 => độ dài trục nhỏ 2b = 2323
c2 = a2 – b2
= 1414 - 1919 = 536536 => c = √5656
F1(-√5656 ; 0) và F2(√5656 ; 0)
A1(-1212; 0), A2(1212; 0), B1(0; -1313 ), B2(0; 1313 ).
c) Chia 2 vế của phương trình cho 36 ta được :
=> x29x29 + y24y24 = 1
Từ đây suy ra: 2a = 6. 2b = 4, c = √5
=> F1(-√5 ; 0) và F2(√5 ; 0)
A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).
\(T=-\frac{3}{2}\)\(+\)\(\left(\frac{3}{2}\right)^2\)\(-\left(\frac{3}{2}\right)^3\)\(+\left(\frac{3}{2}\right)^4\)\(-...+\left(\frac{3}{2}\right)^{20}\)
\(\frac{3}{2}T=\)\(-\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3-\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5-...+\left(\frac{3}{2}\right)^{21}\)
\(\frac{3}{2}T+T=\)\(-\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3-\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5-...+\left(\frac{3}{2}\right)^{21}\)\(+\left(\frac{-3}{2}\right)+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4-...+\left(\frac{3}{2}\right)^{20}\)
\(\frac{5}{2}T=\left(\frac{3}{2}\right)^{21}-\frac{3}{2}\)
\(T=\left\{\left(\frac{3}{2}\right)^{21}-\frac{3}{2}\right\}:\frac{5}{2}\)
Cậu dựa vào phần này nha ♥