Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) pt \(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Đk: \(x\ge\dfrac{5}{2}\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\) (*)
TH1: \(\sqrt{2x-5}-1>0\Leftrightarrow x>3\)
(*) \(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\Leftrightarrow2\sqrt{2x-5}=2\Leftrightarrow\sqrt{2x-5}=1\Leftrightarrow x=3\left(L\right)\)
TH2: \(\sqrt{2x-5}+3< 0\) (vô lý)
TH3: \(x\le3\)
(*) \(\Leftrightarrow\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\Leftrightarrow4=4\) (luôn đúng)
KL: \(\dfrac{5}{2}\le x\le3\)
Câu a)
ĐK: \(x\geq \frac{1}{2}\)
Ta có:
\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
\(\Rightarrow \sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2\)
\(\Leftrightarrow |\sqrt{2x-1}-1|=2\)
\(\Rightarrow \left[\begin{matrix} \sqrt{2x-1}-1=2\\ \sqrt{2x-1}-1=-2\end{matrix}\right.\Rightarrow \left[\begin{matrix} \sqrt{2x-1}=3\rightarrow 5(t/m)\\ \sqrt{2x-1}=-1(\text{vô lý})\end{matrix}\right.\)
Vậy $x=5$
Câu b)
ĐK: \(x\geq \frac{5}{2}\)
Nhân cả 2 vế với \(\sqrt{2}\) ta có:
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-6\sqrt{2x-5}}=4\)
Đặt \(\sqrt{2x-5}=a(a\geq 0)\Rightarrow 2x-5=a^2\Rightarrow 2x=a^2+5\)
PT trở thành:
\(\sqrt{a^2+5+4+6a}+\sqrt{a^2+5-4-6a}=4\)
\(\Leftrightarrow \sqrt{a^2+6a+9}+\sqrt{a^2-6a+1}=4\)
\(\Leftrightarrow \sqrt{(a+3)^2}+\sqrt{a^2-6a+1}=4\)
\(\Leftrightarrow a+3+\sqrt{a^2-6a+1}=4\)
\(\Rightarrow \sqrt{a^2-6a+1}=1-a\)
\(\Rightarrow a^2-6a+1=(1-a)^2=a^2-2a+1\) (bình phương 2 vế)
\(\Rightarrow -6a=-2a\Rightarrow a=0\)
$a=0$ kéo theo $x=\frac{5}{2}$ (thử lại thấy t/m)
Vậy..........
1/ \(\sqrt{2x+5}=\sqrt{1-x}\)\(\left(ĐKXĐ:1\ge x\ge-\frac{5}{2}\right)\)
\(\Leftrightarrow2x+5=1-x\Leftrightarrow3x=-4\Leftrightarrow x=-\frac{4}{3}\left(TM\right)\)
KL:.......................
2/ Tương tự
3/ \(\sqrt{2x^2-3}=\sqrt{4x-3}\) \(\left(ĐKXĐ:x\ge\frac{3}{4}\right)\)
\(\Leftrightarrow2x^2-3=4x-3\Leftrightarrow2x^2-4x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=2\left(TM\right)\end{matrix}\right.\)
4/ Tương tự
5/ Tương tự
6/ \(\sqrt{x^2-x-6}=\sqrt{x-3}\left(ĐKXĐ:x\ge3\right)\)
\(\Leftrightarrow x^2-x-6=x-3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
KL:.................
\(F=\left(\dfrac{1}{3-\sqrt{5}}+\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{6}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}:\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{3}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{3}{2\sqrt{5}}\)
\(G=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\dfrac{\sqrt{5+2\sqrt{5}+1}+\sqrt{9-2.3.\sqrt{5}+5}-2}{\sqrt{2}}=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(H=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{x-2-2\sqrt{2}.\sqrt{x-2}+2}=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\left(x\ge2\right)\)
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
Bình phương 2 vế lên bn
\(\sqrt{x+\sqrt{2x-5}-2}+\sqrt{x-3\sqrt{2x-5}+2}\)=\(3\sqrt{2}\)
=> \(\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5-6\sqrt{2x-5}+9}=6\)
=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}-3\right)^2}=6\)
=>\(\sqrt{2x-5}+1+|\sqrt{2x-5}-3|=6\)
Đến đây dễ bạn rồi tự làm tiếp