\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

b) \(\sqrt{x+2+3\sqrt{2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Câu a)

ĐK: \(x\geq \frac{1}{2}\)

Ta có:

\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

\(\Rightarrow \sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2\)

\(\Leftrightarrow |\sqrt{2x-1}-1|=2\)

\(\Rightarrow \left[\begin{matrix} \sqrt{2x-1}-1=2\\ \sqrt{2x-1}-1=-2\end{matrix}\right.\Rightarrow \left[\begin{matrix} \sqrt{2x-1}=3\rightarrow 5(t/m)\\ \sqrt{2x-1}=-1(\text{vô lý})\end{matrix}\right.\)

Vậy $x=5$

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

Câu b)

ĐK: \(x\geq \frac{5}{2}\)

Nhân cả 2 vế với \(\sqrt{2}\) ta có:

\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-6\sqrt{2x-5}}=4\)

Đặt \(\sqrt{2x-5}=a(a\geq 0)\Rightarrow 2x-5=a^2\Rightarrow 2x=a^2+5\)

PT trở thành:
\(\sqrt{a^2+5+4+6a}+\sqrt{a^2+5-4-6a}=4\)

\(\Leftrightarrow \sqrt{a^2+6a+9}+\sqrt{a^2-6a+1}=4\)

\(\Leftrightarrow \sqrt{(a+3)^2}+\sqrt{a^2-6a+1}=4\)

\(\Leftrightarrow a+3+\sqrt{a^2-6a+1}=4\)

\(\Rightarrow \sqrt{a^2-6a+1}=1-a\)

\(\Rightarrow a^2-6a+1=(1-a)^2=a^2-2a+1\) (bình phương 2 vế)

\(\Rightarrow -6a=-2a\Rightarrow a=0\)

$a=0$ kéo theo $x=\frac{5}{2}$ (thử lại thấy t/m)

Vậy..........

8 tháng 8 2017

b) pt \(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

Đk: \(x\ge\dfrac{5}{2}\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\) (*)

TH1: \(\sqrt{2x-5}-1>0\Leftrightarrow x>3\)

(*) \(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\Leftrightarrow2\sqrt{2x-5}=2\Leftrightarrow\sqrt{2x-5}=1\Leftrightarrow x=3\left(L\right)\)

TH2: \(\sqrt{2x-5}+3< 0\) (vô lý)

TH3: \(x\le3\)

(*) \(\Leftrightarrow\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\Leftrightarrow4=4\) (luôn đúng)

KL: \(\dfrac{5}{2}\le x\le3\)

8 tháng 8 2017

câu a, biểu thức trong dấu căn thứ 2 là \(x-2\sqrt{2x-1}\) hay \(x-\sqrt{2x-1}\) (có số 2 hay không?)

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

20 tháng 7 2019

a) Do VT >=0 nên VP >=0 nên \(x\ge4\)

\(PT\Leftrightarrow\left(x-2\right)-\sqrt{x-2}-2=0\)

Đặt \(\sqrt{x-2}=t\ge\sqrt{4-2}=\sqrt{2}\) thì \(t^2-t-2=0\)

\(\Leftrightarrow t=2\left(loại t = -1 vì nó không thỏa mãn đk\right)\Leftrightarrow x-2=4\Leftrightarrow x=6\)

20 tháng 7 2019

b) (sai thì thôi nha) Dễ thấy x = 4 là một nghiệm

Xét x khác 4:ĐK: \(x>4\)(1) . Mặt khác do VT > 0 nên VP > 0 suy ra x < 4(2)

Do x không thể đồng thời thỏa mãn (1) và (2) nên vô nghiệm.

Vậy x = 4

18 tháng 6 2018

2)a) \(\sqrt{17-12\sqrt{2}}-2\sqrt{2}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-2\sqrt{2}\)

\(=\left|3-2\sqrt{2}\right|-2\sqrt{2}\)

\(=3-2\sqrt{2}-2\sqrt{2}\)

\(=3-4\sqrt{2}\)

b) \(\sqrt{15-6\sqrt{6}}+\sqrt{6}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{6}\)

\(=\left|3-\sqrt{6}\right|+\sqrt{6}\)

\(=3-\sqrt{6}+\sqrt{6}\)

\(=3\)

5 tháng 7 2019

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\) \(+,x\ge2\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1\ge1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|=x-2\\\left|x-1\right|=x-1\end{matrix}\right.\Rightarrow\left|x-2\right|+\left|x-1\right|=x-2+x-1=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(\text{t/m}\right)\) \(+,1\le x< 2\Rightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=x-1\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=x-1+2-x=1\left(l\right)\) \(+,x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=-\left(x-1\right)=1-x\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(\text{t/m}\right)\) \(f,\left\{{}\begin{matrix}\sqrt{x^2-9}\ge0\\\sqrt{x^2-6x+9}\ge0\end{matrix}\right.mà:\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-9}=0\\\sqrt{x^2-6x+9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\sqrt{\left(x-3\right)^2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow x=3\)\thay vào ta thấy thoa man => x=3

5 tháng 7 2019

\(ĐK:x\ge4\)\(\sqrt{x^2+x-20}=\sqrt{x^2+5x-4x-20}=\sqrt{x\left(x+5\right)-4\left(x+5\right)}=\sqrt{\left(x-4\right)\left(x+5\right)}=\sqrt{x-4}.\sqrt{x+5}=\sqrt{x-4}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+5}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x+5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(l\right)\end{matrix}\right.\Rightarrow x=4\) \(b,ĐK:x\le2;\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\Leftrightarrow x+1+2-x+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow3+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow2\sqrt{\left(x+1\right)\left(2-x\right)}=3\Leftrightarrow\sqrt{\left(x-1\right)\left(2-x\right)}=1,5\Leftrightarrow\left(x-1\right)\left(2-x\right)=\frac{9}{4}\Leftrightarrow\left(x-1\right)\left(x-2\right)=-\frac{9}{4}\Leftrightarrow x^2-3x+2=-\frac{9}{4}\Leftrightarrow x^2-3x+\frac{9}{4}=-2\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-2\Rightarrow vonghiem\)

5 tháng 7 2018

\(a.\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)

\(\text{⇔}\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\text{⇔}\text{ |}\sqrt{x-1}-2\text{ |}+\text{ |}\sqrt{x-1}+3\text{ |}=5\) ( x ≥ 1 )

\(\text{ |}\sqrt{x-1}-2\text{ |}+\sqrt{x-1}+3=5\) ( 1 )

+) Với : \(\sqrt{x-1}>2\)\(x>5\) , ta có :

( 1) ⇔ \(\sqrt{x-1}-2+\sqrt{x-1}+2=5\)

\(2\sqrt{x-1}=5\)\(x=\dfrac{29}{4}\left(TM\right)\)

+) Với : \(\sqrt{x-1}< 2\text{⇔}x< 5\) , ta có :

( 1) ⇔ \(5=5\) ( luôn đúng )

KL.............

\(b.\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=x-1\)

\(\text{ |}\sqrt{x-1}+1\text{ |}+\text{ |}\sqrt{x-1}-1\text{ |}=x-1\)

Tới đây giải tương tự như trên nhé .

Còn lại Tương tự .

5 tháng 7 2018

mỗi căn thức trên có dạng: \(\sqrt{a^2+b+2a\sqrt{b}}\)

ta sẽ phân tích thành: \(\sqrt{a^2+b+2a\sqrt{b}}=\sqrt{\left(\sqrt{b}-a\right)^2}\) (#)

** lấy căn lớn đầu tiên của câu a làm vd**

\(a^2+b=x+3\) (1)

\(2a\sqrt{b}=-4\sqrt{x-1}\) (2)

(2) => \(a\sqrt{b}=-2\sqrt{x-1}\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\\sqrt{b}=\sqrt{x-1}\end{matrix}\right.\) (*)

thử lại với (1): \(a^2+b=a^2+\left(\sqrt{b}\right)^2=\left(-2\right)^2+\left(\sqrt{x-1}\right)^2=4+x-1=x+3\)

Nếu VT (a^2 +b) bằng VP (x+3) thì đã tìm được a và b đúng , tức là dấu suy ra cuối của (*) đúng và biểu thức có thể phân tích thành dạng căn bình phương 1 biểu thức (dạng (#))

ráp a, căn b vào công thức (#), ta đc:

\(\sqrt{x+3-4\sqrt{x-1}}=\sqrt{2+x-1-4\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}-\left(-2\right)\right)^2}=\sqrt{\left(\sqrt{x-1}+2\right)^2}=\left|\sqrt{x-1}+2\right|\)

***************

sau khi phá căn các biểu thức trong phương trình rồi thì giải phương trình chứa dấu GTTĐ bằng cách xét 4 trường hợp.

Sau khi phá hết căn lớn, phương trình sẽ có dạng như sau:

\(\left|A\right|+\left|B\right|=5\) (số 5 là lấy của câu a, làm vd thôi, còn số gì cũng đc)

chia 4 trường hợp: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}A< 0\\B< 0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A< 0\\B\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge0\\B< 0\end{matrix}\right.\end{matrix}\right.\)

(thêm dấu bằng vào 1 loại dấu thôi (lớn > hoặc bé <)

dựa vào dấu của biểu thức đang xét mà bỏ dấu GTTĐ. Sau khi ra được x thì thử lại vào đk (không được CHỈ thử vào phương trình, vì nghiệm có thể đúng trong trường hợp này nhưng sai trong trường hợp khác, dẫn đến nhận nhầm nghiệm)