Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(D=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3\sqrt{x}+1-\left(3\sqrt{x}-2\right)}\)
\(D=\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3\sqrt{x}+1-3\sqrt{x}+2}\)
\(D=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}\)
\(D=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
a: \(\Leftrightarrow6x^2+2x+8+\sqrt{3x^2+x+4}-18=0\)
\(\Leftrightarrow2\left(\sqrt[3]{3x^2+x+4}\right)^3+\sqrt[3]{3x^2+x+4}-18=0\)
=>\(3x^2+x+4=8\)
=>3x^2+x-4=0
=>x=1 hoặc x=-4/3
b: ĐKXĐ: x>0
Pt sẽ là \(x+8+9x-6\sqrt{x\left(x+8\right)}=0\)
=>\(10x+8=\sqrt{36x\left(x+8\right)}\)
=>36x^2+288x=100x^2+160x+64
=>x=1
Anh/chị tham khảo ở đây nhé:
(4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> (4x - 1)²(x² + 1) = [ 2(x² + 1) + 2x - 1 ]²
<=> (16x² - 8x + 1)(x² + 1) = 4(x² + 1)² + 4x² + 1 + 8x(x² + 1) - 4(x² + 1) - 4x
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4(x^4 + 2x² + 1) + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4x^4 + 8x² + 4 + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x
<=> 16x^4 - 8x^3 + 17x² - 8x + 1 = 4x^4 + 8x^3 + 8x² + 4x + 1
<=> 12x^4 - 16x^3 + 9x² - 12x = 0
<=> x(12x^3 - 16x² + 9x - 12) = 0
<=> x(12x^3 + 9x - 16x² - 12) = 0
<=> x[ 3x(4x² + 3) - 4(4x² + 3) = 0
<=> x(3x - 4)(4x² + 3) = 0
<=> x = 0
<=> 3x - 4 = 0
<=> 4x² + 3 = 0
<=> x = 0
<=> x = 4/3
<=> x² = -3/4 --> Không có nghiệm vì x² ≥ 0 với mọi x
Thế x = 0 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> -1√1 = 2 - 1
<=> -1 = 1 ( Vô lý loại )
Thế x = 4/3 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> 13/3√25/9 = 2.25/9 + 2.4/3 - 1
<=> 65/9 = 65/9 ( đúng )
Nghiệm là x = 4/3
1.
\(x+4\sqrt{x}+3=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+\sqrt{x}+3\sqrt{x}+3=0\\ \Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\\ \Rightarrow x\in\varnothing\)
2.
\(x^2+3x\sqrt{x}+2x=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x^2+x\sqrt{x}+2x\sqrt{x}+2x=0\\ \Leftrightarrow x\sqrt{x}\left(\sqrt{x}+1\right)+2x\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\)
3.
\(x+2\sqrt{x}-8=0\\ \Leftrightarrow x-2\sqrt{x}+4\sqrt{x}-8=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)+4\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
4.
\(x+\sqrt{9x}-\sqrt{100}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+3\sqrt{x}-10=0\\ \Leftrightarrow x+5\sqrt{x}-2\sqrt{x}-10=0\\ \Leftrightarrow\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
5.
\(x+\sqrt{3x}-\sqrt{2x}-\sqrt{6}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+\sqrt{3}\right)-\sqrt{2}\left(\sqrt{x}+\sqrt{3}\right)=0\\ \Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{x}-\sqrt{2}=0\Leftrightarrow x=2\)
6.
\(\sqrt{5x}-x-\sqrt{15}+\sqrt{3x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{5}-\sqrt{x}\right)-\sqrt{3}\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{3}=0\\\sqrt{5}-\sqrt{x}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
a) Ta có: \(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow\sqrt{4}.\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}.\sqrt{x-2}=20\)
\(\Leftrightarrow2.\sqrt{x-2}+5\sqrt{x-2}-3.\sqrt{x-2}=20\)
\(\Leftrightarrow4.\sqrt{x-2}=20\)
\(\Leftrightarrow\sqrt{x-2}=5\)
\(\Leftrightarrow x-2=25\)
\(\Leftrightarrow x=27\left(TM\right)\)
Vậy \(S=\left\{27\right\}\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
ĐK : \(x\ge0\)
Áp dụng bđt cauchy ta có :
\(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}\ge2\sqrt{\sqrt{x+8}.\frac{9x}{\sqrt{x+8}}}=2.3\sqrt{x}=6\sqrt{x}\)
\(\Rightarrow VT=\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}\ge6\sqrt{x}-6\sqrt{x}=0=VP\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+8}=\frac{9x}{\sqrt{x+8}}\Leftrightarrow\sqrt{x+8}^2=9x\Leftrightarrow x+8=9x\Rightarrow x=1\)(TM)
Vậy nghiệm PT là S = {1}