Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn giải theo delta nha :) mình vd một câu đó
\(1.x^2-11x+30=0\)
\(\Delta=\left(-11\right)^2-4.1.30=1>0\)
Do đó pt có 2 nghiệm phân biệt là:
\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)
1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
=> pt vô no
2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)
\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)
\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)
\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)
Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm
Câu 2:
ĐKXĐ: \(x\le3\)
\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))
\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)
\(\Leftrightarrow36x=-36\Rightarrow x=-1\)
Câu 3:
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)
\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)
Phương trình vô nghiệm
1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)
<=> \(\sqrt{\left(x-10\right)^2}=10\)
<=> \(\left|x-10\right|=10\)
=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)
Vậy S = \(\left\{20;0\right\}\)
2) \(\sqrt{x +2\sqrt{x}+1}=6\)
<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)
<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)
<=> \(\left|\sqrt{x}+1\right|=6\)
=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)
Vậy S = \(\left\{25\right\}\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)
<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)
<=> \(\left|x-3\right|=\sqrt{3}+1\)
=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)
Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)
<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)
<=> \(\left|\sqrt{3x}+1\right|=5\)
=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)
<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)
Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)
<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)
<=> \(\left|\sqrt{6x}+2\right|=7\)
=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)
=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)
a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)
Vay S = { 2 }
b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)
Vay S = { 4 }
c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)
Vay S = {\(\sqrt{2}\) }
d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)
Vay S = { - 3/2 }
e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)
Vay S = { 3 }
F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)
<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
Vay S = { 1/2 }
g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)
bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả
1)\(\sqrt{2x^2-2x+\frac{1}{2}}=\frac{1}{\sqrt{2}}\left(ĐKXĐ:x^2-x+\frac{1}{4}\ge0\right)\)
\(2x^2-2x+\frac{1}{2}=\frac{1}{2}\)
\(2x^2-2x=0\)
\(2x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
2)\(\sqrt{9x-9}-2\sqrt{\frac{x-1}{4}}=6\left(ĐKXĐ:x\ge1\right)\)
\(\sqrt{9\left(x-1\right)}-2.\frac{\sqrt{x-1}}{2}=6\)
\(3\sqrt{x-1}-\left(\sqrt{x-1}\right)=6\)
\(2\sqrt{x-1}=6\)
\(\sqrt{x-1}=3=\sqrt{9}\)
\(\Rightarrow x=10\)
4)\(1-3x+\sqrt{x^2-6x+9}=0\)
\(1-3x+\sqrt{\left(x-3\right)^2}=0\)
\(1-3x+x-3=0\)
\(x=-1\)
5)\(\frac{1}{2}\sqrt{\frac{3x+9}{4}}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{1}{2}.\frac{\sqrt{3x+9}}{2}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}}{4}+\sqrt{x+3}=\sqrt{1-x}\)
\(\frac{\sqrt{3x+9}+4\sqrt{x+3}}{4}=\frac{4\sqrt{1-x}}{4}\)
\(\Rightarrow\sqrt{3}.\sqrt{x+3}+4\sqrt{x+3}=4\sqrt{1-x}\)
\(\Rightarrow\left(\sqrt{3}+4\right)\left(\sqrt{x+3}\right)=\sqrt{2-2x}\)
6)\(\sqrt{4x^2-9}.\left(\sqrt{x+1}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x^2-9=0\\\sqrt{x+1}+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x^2=9\\\sqrt{x+1}=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
5.
ĐKXĐ: ...
\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)
\(\Leftrightarrow x=5\)
6.
ĐKXĐ: \(-4\le x\le4\)
\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)
\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)
\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)
\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)
\(\Rightarrow x=\frac{96}{25}\)
1.
Bạn coi lại đề
2.
ĐKXĐ: \(1\le x\le2\)
Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:
\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)
\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)
I) xd mọi x
\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)
\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)
kết luận
\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
1.
\(x+4\sqrt{x}+3=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+\sqrt{x}+3\sqrt{x}+3=0\\ \Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\\ \Rightarrow x\in\varnothing\)
2.
\(x^2+3x\sqrt{x}+2x=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x^2+x\sqrt{x}+2x\sqrt{x}+2x=0\\ \Leftrightarrow x\sqrt{x}\left(\sqrt{x}+1\right)+2x\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\)
3.
\(x+2\sqrt{x}-8=0\\ \Leftrightarrow x-2\sqrt{x}+4\sqrt{x}-8=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)+4\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
4.
\(x+\sqrt{9x}-\sqrt{100}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+3\sqrt{x}-10=0\\ \Leftrightarrow x+5\sqrt{x}-2\sqrt{x}-10=0\\ \Leftrightarrow\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
5.
\(x+\sqrt{3x}-\sqrt{2x}-\sqrt{6}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+\sqrt{3}\right)-\sqrt{2}\left(\sqrt{x}+\sqrt{3}\right)=0\\ \Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{x}-\sqrt{2}=0\Leftrightarrow x=2\)
6.
\(\sqrt{5x}-x-\sqrt{15}+\sqrt{3x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{5}-\sqrt{x}\right)-\sqrt{3}\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{3}=0\\\sqrt{5}-\sqrt{x}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)