Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>x^2-x=3-x
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
2: =>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
3: =>2|x-1|=6
=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
4: =>|2x-3|=|x-2|
=>2x-3=x-2 hoặc 2x-3=-x+2
=>x=1 hoặc x=5/3
5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
a: \(=\dfrac{\left|x+2\right|}{x-1}\)
b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)
c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
Bài 1 :
\(\dfrac{x+4}{x^2-9}-\dfrac{2}{x+3}=\dfrac{4x}{3x-x^2}\) ( ĐK : \(\left\{{}\begin{matrix}x\ne0\\x\ne-3\\x\ne3\end{matrix}\right.\) )
\(\Leftrightarrow\dfrac{x\left(x+4\right)}{x\left(x-3\right)\left(x+3\right)}-\dfrac{2x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{-4x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow x\left(x+4\right)-2x\left(x-3\right)=-4x\left(x+3\right)\)
\(\Leftrightarrow x^2+4x-2x^2+6x+4x^2+12x=0\)
\(\Leftrightarrow3x^2+22x=0\)
\(\Leftrightarrow x\left(3x+22\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+22=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-\dfrac{22}{3}\left(N\right)\end{matrix}\right.\)
Vậy \(x=-\dfrac{22}{3}\)
Bài 2 : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(x^2+x=t\) . Phương trình trở thành :
\(t\left(t+1\right)=42\)
\(\Leftrightarrow t^2+t-42=0\)
\(\Leftrightarrow\left(t-6\right)\left(t+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-6=0\\t+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)
Với \(t=6\)
\(\Leftrightarrow x^2+x=6\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Với \(t=-7\)
\(\Leftrightarrow x^2+x=-7\)
\(\Leftrightarrow x^2+x+7=0\)
---> Phương trình vô nghiệm !
Vậy \(x=-3;x=2\)
Trả lời:
\(\sqrt{x^2-4x+4}=x^2-mx+2m-4\)\(\left(ĐK:x\ge2\right)\)
\(\sqrt{\left(x-2\right)^2}=x^2-mx+2m-4\)
\(x-2=x^2-mx+2m-4\)
\(x^2-mx+2m-x-2=0\)
\(x^2-\left(m+1\right).x+2m-2=0\)
\(\Delta=\left[-\left(m+1\right)\right]^2-4.\left(2m-2\right)\)
\(=m^2+2m+1-8m+8\)
\(=m^2-6m+9\)
\(\Rightarrow\left(m-3\right)^2\ge0\)
\(\Rightarrow m-3=0\)
\(\Rightarrow m=3\)
Thay m=3 vào phương trình ta có:
\(x^2-\left(3+1\right).x+2.3-2=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\left(TM\right)\)
Vậy \(x=2\Leftrightarrow m=3\)