\(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)

giải phương trình

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

21 tháng 9 2019

 ĐKXĐ:....

\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)

\(\Rightarrow4-\sqrt{1-x}=2-x\)

\(\Rightarrow\sqrt{1-x}=2+x\)

\(\Rightarrow1-x=4+4x+x^2\)

\(\Rightarrow1-x-4-4-x^2=0\)

\(\Rightarrow x^2+x+7=0\)

Đến đây dễ rồi làm nốt nha bạn !

27 tháng 9 2019

 ĐKXĐ:....

\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x​​=2−x

\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x​=2−x

\Rightarrow\sqrt{1-x}=2+x⇒1−x​=2+x

\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2

\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0

\Rightarrow x^2+x+7=0⇒x2+x+7=0

Đến đây dễ rồi làm nốt nha bạn !

20 tháng 7 2019

Đặt ẩn phụ

20 tháng 7 2019

\(a,\sqrt[3]{x+1}=x+1\)

\(\Leftrightarrow\left(x+1\right)=\left(x+1\right)^3\)

\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1+1\right)\left(x+1-1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=0\left(h\right)x=-1\left(h\right)x=-2\)

22 tháng 11 2016

d/ \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Rightarrow a^3-b^3=2}\)

\(\Rightarrow\hept{\begin{cases}a^3-b^3=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a^2+b^2+ab\right)=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\a^2+b^2+ab=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=2\\b^2+2b+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=1\\\sqrt[3]{x-1}=-1\end{cases}\Leftrightarrow}x=0}\)

22 tháng 11 2016

bài b , lập phương lên 

bài c , đặt cái căn đưa về hệ 

mới nhìn dc làm dc liền thế thui

16 tháng 8 2016

pt đã cho \(\Leftrightarrow\sqrt{3}-x=x^2\left(\sqrt{3}+x\right)\Leftrightarrow x^3+x^2\sqrt{3}+x-\sqrt{3}=0\)
\(\Leftrightarrow x^3+\frac{3.\sqrt{3}}{3}.x^2+3.\left(\frac{\sqrt{3}}{3}\right)x+\frac{\sqrt{3}}{9}=\frac{10\sqrt{3}}{9}\)
\(\Leftrightarrow\left(x+\frac{\sqrt{3}}{3}\right)^3=\frac{10\sqrt{3}}{9}\Rightarrow x+\frac{\sqrt{3}}{3}=\sqrt[3]{\frac{10\sqrt{3}}{9}}\Rightarrow x=\sqrt[3]{\frac{10\sqrt{3}}{9}}-\frac{\sqrt{3}}{3}\)

12 tháng 9 2016

sao lại = 10 căn 3 /3 hả bạn , giảng cho mik

21 tháng 12 2016

(Vậy chắc còn cách "làm liều" thôi. Chứ pt bậc 3 nghiệm vô tỉ đã học đâu?)

Xét trường hợp \(x=\sqrt{3}\) và \(x=-\sqrt{3}\) thấy chúng ko là nghiệm pt.

Xét trường hợp \(\hept{\begin{cases}x\ne\sqrt{3}\\x\ne-\sqrt{3}\end{cases}}\). Do 2 vế dương nên \(x>0\).

Kiểm tra thấy \(x=t=\frac{\sqrt[3]{10}-1}{\sqrt{3}}\) là nghiệm (cái này bạn thế vào rồi tính toán thôi)

Ta sẽ CM pt không còn nghiệm khác \(t\).

Giả sử \(x< t\). Khi đó \(\sqrt{\sqrt{3}-x}>\sqrt{\sqrt{3}-t}\) còn \(x\sqrt{\sqrt{3}+x}< t\sqrt{\sqrt{3}+t}\) nên vô lí

(Nhớ rằng \(\sqrt{\sqrt{3}-t}=t\sqrt{\sqrt{3}+t}\) do \(t\) là nghiệm pt)

Giả sử \(x>t\) tương tự suy ra vô lí.

Vậy pt có nghiệm duy nhất \(x=t\) với \(t\) là phân số trên.

20 tháng 12 2016

Bạn xem lại đề nha bạn. Pt trên có nghiệm duy nhất \(x=\frac{\sqrt[3]{10}-1}{\sqrt{3}}\) nên mình nghi là đề sai ở đâu đó.