Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\dfrac{4-2x}{x^2}}\) có nghĩa thì \(\left\{{}\begin{matrix}4-2x\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\le4\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne0\end{matrix}\right.\)
tìm x để bt xác định
cho mỗi biểu thức trong căn
lớn hơn hoặc =0
\(\sqrt{\dfrac{4}{2x+3}}\) xác định khi \(\dfrac{4}{2x+3}\ge0\Rightarrow2x+3>0\Rightarrow x>-\dfrac{3}{2}\)
\(\sqrt{\dfrac{2x-1}{2-x}}\) xác định khi \(\dfrac{2x-1}{2-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2-x< 0\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow\dfrac{1}{2}\le x< 2\)
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
Biểu thức xác định khi\(\hept{\begin{cases}\frac{x-2}{x^2-7x+12}\ge0\\x^2-7x+12\ne0\end{cases}}\)Từ đó bạn giải hệ phương trình này ra là sẽ ra đc điều kiện nha bn!
\(\sqrt{\frac{x-2}{x^2-7x+12}}\)xác định
\(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x^2-7x+12\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x^2-3x-4x+12\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x\left(x-3\right)-4\left(x-3\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\\left(x-3\right)\left(x-4\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ne3\\x\ne4\end{cases}}\)
vậy để phân thức xác định thì \(\hept{\begin{cases}x\ge2\\x\ne3\\x\ne4\end{cases}}\)
ĐKXĐ: \(-x^2+2x-1>=0\)
=>\(x^2-2x+1< =0\)
=>\(\left(x-1\right)^2< =0\)
mà \(\left(x-1\right)^2>=0\forall x\)
nên (x-1)2=0
=>x-1=0
=>x=1
a) \(\sqrt{\frac{3x-2}{x^2-2x+4}}=\sqrt{\frac{3x-2}{\left(x-1\right)^2+3}}\)
Mà \(\left(x-1\right)^2+3>0\)nên bt xác định\(\Leftrightarrow3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
b)\(\sqrt{\frac{2x-3}{2x^2+1}}\)
Vì \(2x^2+1>0\)nên bt xác định\(\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)