Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
b: ĐKXĐ: (x-4)(x-3)>=0
=>x>=4 hoặc x<=3
c: ĐKXĐ: (x-5)(x-4)>=0
=>x>=5 hoặc x<=4
\(ĐK:\dfrac{1}{x^2}\ge0\left(luôn.đúng.do.1>0;x^2>0\right);x\ne0\\ \LeftrightarrowĐK:x\in R;x\ne0\)
Cho biểu thức trong dấu căn lớn hơn hoặc bằng 0 để tìm đk của x.
a) \(\sqrt{-7x}\)
\(ĐKXĐ:x\le0\)
b) \(-\sqrt{\frac{x-2}{-5}}\)
\(ĐKXĐ:x\le2\)
c) \(\sqrt{\frac{3}{8-x}}\)
\(ĐKXĐ:x\le8\)
a, \(\sqrt{x^2+12x+40}\)
\(=\sqrt{\left(x+6\right)^2+4}\)
Biểu thức trên xác định \(\Leftrightarrow\left(x+6\right)^2+4\ge0\) mà \(\left(x+6\right)^2\ge0\forall x\Rightarrow\left(x+6\right)^2+4\ge4\forall x\)
Vậy biểu thức trên xác định với mọi x
b, \(\frac{1}{\sqrt{9x^2-6x+1}}\)
\(=\frac{1}{\sqrt{\left(3x-1\right)^2}}\)
Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(3x-1\right)^2\ge0\\\left(3x-1\right)^2\ne0\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)^2\ne0\)vì (3x-1)2 luôn \(\ge\)0 với mọi x
\(\Leftrightarrow3x-1\ne0\Leftrightarrow3x\ne1\Leftrightarrow x\ne\frac{1}{3}\)
Vậy biểu thức trên xác định khi và chỉ khi \(x\ne\frac{1}{3}\)
c, \(\sqrt{\left(4x^2+2x+3\right)\left(3-2x\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\\\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\end{cases}}\)Biểu thức trên xác định \(\Leftrightarrow\)\(\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\)(1) hoặc \(\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\)(2)
mà \(4x^2+2x+3=\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\)luôn \(\ge\frac{11}{4}\)\(\forall x\)
\(\Rightarrow\)(2) không thỏa mãn, (1) thỏa mãn
Từ (1)\(\Rightarrow3-2x\ge0\)(vì \(4x^2+2x+3\)luôn \(\ge0\forall x\))
\(\Rightarrow3\ge2x\)
\(\Rightarrow\frac{3}{2}\ge x\)hay\(x\le\frac{3}{2}\)
Vậy biểu thức trên xác định khi và chỉ khi \(x\le\frac{3}{2}\)
d, \(\sqrt{\frac{2x^2+3x+16}{5-7x}}\)
=\(\frac{\sqrt{\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}}}{\sqrt{5-7x}}\)
Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2\\5-7x>0\end{cases}+\frac{119}{8}\ge0}\)
mà \(\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}\ge\frac{119}{8}\forall x\)
\(\Rightarrow\)Biểu thưc trên xác định \(\Leftrightarrow5-7x>0\)\(\Leftrightarrow5>7x\Leftrightarrow\frac{5}{7}>x\)hay \(x< \frac{5}{7}\)
\(\sqrt{\dfrac{4-2x}{x^2}}\) có nghĩa thì \(\left\{{}\begin{matrix}4-2x\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\le4\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ne0\end{matrix}\right.\)
Biểu thức xác định khi\(\hept{\begin{cases}\frac{x-2}{x^2-7x+12}\ge0\\x^2-7x+12\ne0\end{cases}}\)Từ đó bạn giải hệ phương trình này ra là sẽ ra đc điều kiện nha bn!
\(\sqrt{\frac{x-2}{x^2-7x+12}}\)xác định
\(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x^2-7x+12\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x^2-3x-4x+12\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x\left(x-3\right)-4\left(x-3\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\\left(x-3\right)\left(x-4\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ne3\\x\ne4\end{cases}}\)
vậy để phân thức xác định thì \(\hept{\begin{cases}x\ge2\\x\ne3\\x\ne4\end{cases}}\)