Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\sqrt{6+\sqrt{35}}.\sqrt{6-\sqrt{35}}=1\)
\(\Leftrightarrow VT=\sqrt{\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)}\)
\(\Leftrightarrow VT=\sqrt{6^2-35}=\sqrt{1}=1=VP\)
b ) \(VT=\left(\sqrt{2}-1\right)^2=2+1-2\sqrt{2}=3-2\sqrt{2}\)
\(VP=\sqrt{9}-\sqrt{8}=3-2\sqrt{2}\)
=> \(VT=VP.\)
\(=\sqrt{\frac{\sqrt{5}\left(8\sqrt{5}-3\sqrt{35}\right)}{\left(8\sqrt{5}+3\sqrt{35}\right)\left(8\sqrt{5}-3\sqrt{35}\right)}}\)\(\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\sqrt{\frac{40-15\sqrt{7}}{5}}.\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\sqrt{8-3\sqrt{7}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\sqrt{2}\sqrt{8-3\sqrt{7}}}{\sqrt{2}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\sqrt{16-3\sqrt{7}}}{\sqrt{2}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\sqrt{\left(3-\sqrt{7}\right)^2}}{\sqrt{2}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\left(3-\sqrt{7}\right)}{\sqrt{2}}.\sqrt{2}\left(3+\sqrt{7}\right)\)
\(=9-7\)
\(=2\)
Ta có \(\sqrt{8}=2\sqrt{2};3=\sqrt{9}\)
Mà \(2\sqrt{2}< \sqrt{9}\) (do 8<9 nên \(\sqrt{8}< \sqrt{9}\))
Nên \(\sqrt{8}< 3 \)
Suy ra \(\sqrt{8}-1< 3-1\)
Hay \(\sqrt{8}-1< 2\)
b,Ta có \(\sqrt{64}+\sqrt{23}< \sqrt{64}+\sqrt{25}=13\)
\(\sqrt{17}+\sqrt{85}>\sqrt{16}+\sqrt{81}=13\)
Do đó \(\sqrt{64}+\sqrt{23}< \sqrt{17}+\sqrt{85}\)
c,Ta có : \(\sqrt{17}-\sqrt{8}>\sqrt{16}-\sqrt{9}=4-3=1\)(Lưu ý:\(-\sqrt{8}>-\sqrt{9}\))
\(\sqrt{35}-\sqrt{26}< \sqrt{36}-\sqrt{25}=6-5=1\)
Do đó \(\sqrt{17}-\sqrt{8}>\sqrt{35}-\sqrt{26}\)
a) \(=\left(\sqrt{3}+2\right)^2\)
b)\(=\left(\sqrt{5}-\sqrt{2}\right)^2\)
c)\(=\left(\sqrt{5}+\sqrt{3}\right)^2\)
d)\(=\left(\sqrt{10}-\sqrt{2}\right)^2\)
e) \(=\left(\sqrt{7}+\sqrt{5}\right)^2\)
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
a) Ta có: \(A=\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\cdot\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\sqrt{3}+\sqrt{5}\)
b) Ta có: \(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{4}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+\sqrt{5}-2+\sqrt{6}-\sqrt{5}\)
\(=-1+\sqrt{6}\)