K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)(vì \(\sqrt{3}>1\))

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

5 tháng 11 2019

Mọi người giúp dùm mình với ạ mình cảm ơn

18 tháng 8 2017

Mình đang cần gấp mọi người giải luôn giúp mình nhé. Thanks

30 tháng 11 2019

\(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)

<=> \(x^3=\frac{1}{4-\sqrt{15}}+3\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\right)\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}.\sqrt[3]{4-\sqrt{15}}\right)\)

                           \(+4-\sqrt{15}\)

<=> \(x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3x\)

<=> \(x^3-3x+2006=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+2006\)

<=> \(x^3-3x+2006=\frac{4+\sqrt{15}}{16-15}+4-\sqrt{15}+2006\)

<=> \(x^3-3x+2006=2014\)

15 tháng 10 2021

a: Ta có: \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+1-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{-1}{x-\sqrt{x}+1}\)

9 tháng 10 2018

dat x+3=a ta co

\(\sqrt{8-a}+2\sqrt{a}=6\)

=>\(8-a=\left(6-2\sqrt{a}\right)^2\)

=>\(8-a=36-24\sqrt{a}+a\)

=>\(2a-24\sqrt{a}+24=0\)

=>tim a roi tim x

AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Lời giải:

Gọi biểu thức cần rút gọn là $P$

Xét tử số: $\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3.1}+1}-\sqrt{3}$

$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{3}=|\sqrt{3}+1|-\sqrt{3}=1$

Xét mẫu số:

Ta dự đoán sẽ rút gọn được $\sqrt[3]{17\sqrt{5}-38}$

Đặt $17\sqrt{5}-38=(a+\sqrt{5})^3$ với $a$ nguyên.
$\Leftrightarrow 17\sqrt{5}-38=a^3+15a+\sqrt{5}(3a^2+5)$

$\Rightarrow 17=3a^2+5$ và $-38=a^3+15a$

$\Rightarrow a=-2$

Vậy $17\sqrt{5}-38=(-2+\sqrt{5})^3$

$\Rightarrow (\sqrt{5}+2)\sqrt[3]{17\sqrt{5}-38}=(\sqrt{5}+2)(-2+\sqrt{5})=1$

Vậy $P=\frac{1}{1}=1$

15 tháng 9 2018

TA CÓ:

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)

15 tháng 9 2018

ĐKXĐ: \(x\ge1\)

PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\) 

     (=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=)  \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)