Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+30\sqrt{3}\)
a: Ta có: \(P=\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{\sqrt{x}-1}{\sqrt{x}-x}+\dfrac{\sqrt{x}+3}{x+5\sqrt{x}+6}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b, \(\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{2-\sqrt{5}}\)
\(=\dfrac{2\left(\sqrt{5}-2\right)}{5-4}-\dfrac{2\left(\sqrt{5}+2\right)}{5-4}\)
\(=2\sqrt{5}-4-2\sqrt{5}-4=-8\)
a: Thay \(x=7-4\sqrt{3}\) vào A, ta được:
\(A=2-\sqrt{3}-7+4\sqrt{3}=3\sqrt{3}-5\)
Ta có: \(\sqrt{2x+7}-6=x\)
\(\Leftrightarrow\sqrt{2x+7}=x+6\)
\(\Leftrightarrow x^2+12x+36-2x-7=0\)
\(\Leftrightarrow x^2+10x+29=0\)(Vô lý)
Vậy: \(S=\varnothing\)
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=\sqrt{8}\)
\(\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}-1\right|=4\) (1)
(~ ~ ~) Với \(\dfrac{5}{2}\le x< 3\)
\(\left(1\right)\Leftrightarrow4-2\sqrt{2x-5}=4\)
\(\Leftrightarrow\sqrt{2x-5}=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\) (nhận)
(~ ~ ~) Với \(3\le x\le7\)
=> pt vô nghiệm
(~ ~ ~) Với 7 < x
\(\left(1\right)\Leftrightarrow2\sqrt{2x-5}-4=4\)
\(\Leftrightarrow4\left(2x-5\right)=64\)
\(\Leftrightarrow x=\dfrac{64+20}{8}\)
\(\Leftrightarrow x=\dfrac{21}{2}\) (nhận)
Vậy \(x\in\left\{\dfrac{5}{2};\dfrac{21}{2}\right\}\)
ĐK: \(x,y\ge0\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x}-2\sqrt{y}=-2\left(1\right)\\4\sqrt{x}+2\sqrt{y}=2\end{matrix}\right.\)
Cộng vế theo vế 2 phương trình ta được: \(7\sqrt{x}=0\Leftrightarrow x=0\)
Khi đó \(\left(1\right)\Leftrightarrow-2\sqrt{y}=-2\Leftrightarrow y=1\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)=\left(0;1\right)\)
ĐKXĐ: \(x\ge0;y\ge0\)
\(\left\{{}\begin{matrix}3\sqrt{x}-2\sqrt{y}=-2\\2\sqrt{x}+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x}-2\sqrt{y}=-2\\4\sqrt{x}+2\sqrt{y}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x}=0\\2\sqrt{x}+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2\sqrt{0}+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\0+\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\sqrt{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) (TM)
Vậy...
bn mũ 3 lên đc bao nhiêu đã
sau đó p/t thành nhân tử đặt nhân tử chung
hok tốt
PT <=> \(x+5+x+6=2x+11\)
\(2x+11=2x+11\Leftrightarrow0=0\)