Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=3\)
b/ \(\left\{{}\begin{matrix}2x-y\ge1\\x+2y\ge0\end{matrix}\right.\) (1)
Biến đổi pt dưới:
\(\left(2\left(x+2y\right)-1\right)\sqrt{2x-y-1}=\left(2\left(2x-y-1\right)-1\right)\sqrt{x+2y}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2y}=a\ge0\\\sqrt{2x-y-1}=b\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(2a^2-1\right)b=\left(2b^2-1\right)a\)
\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)
\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Rightarrow a=b\) (do \(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) \(\Rightarrow2ab+1>0\))
\(\Rightarrow\sqrt{x+2y}=\sqrt{2x-y-1}\Leftrightarrow x+2y=2x-y-1\)
\(\Leftrightarrow x=3y+1\)
Thế vào pt trên:
\(\left(3y+1\right)^2-5y^2-8y-3=0\)
\(\Leftrightarrow4y^2-2y-2=0\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=4\\y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\end{matrix}\right.\)
Thế nghiệm vào hệ điều kiện (1) thì chỉ có \(\left(x;y\right)=\left(4;1\right)\) thỏa mãn
Câu a) Cứ bình phương và bình phương cho hết căn rồi bấm máy tính giải ra :v
b)pt\(\left(2\right)\)\(\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)
\(\Leftrightarrow\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)
Đến đây tự giải thế vào (1)
Nguyễn Việt Lâm Giải giúp t TH2 nha!
b,ĐK:\(-3\le x\le\frac{3}{2}\)
\(PT\Leftrightarrow x-1+4\left(\sqrt{x+3}-2\right)+2\left(\sqrt{3-2x}-1\right)=0\)
\(\Leftrightarrow x-1+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}+\frac{2\left(2-2x\right)}{\sqrt{3-2x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)
Với \(x\ge-3\) \(\Rightarrow\frac{4}{\sqrt{x+3}+2}>0\) và \(3-2x\le9\Rightarrow-\frac{4}{\sqrt{3-2x}+1}\ge-1\)
\(\Rightarrow1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)(tm)
c,Đk: \(x\ge2,y\ge3,z\ge5\)
pt <=> \(x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\)
<=> \(\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)
<=>\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=\)0
=>\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)(t/m)
d, \(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\left(đk:x,y,z\ge\frac{1}{4}\right)\)
<=> \(4x+4y+4z=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
<=> \(\left(4x-1\right)-2\sqrt{4x-1}+1+\left(4y-1\right)-2\sqrt{4y-1}+1+\left(4z-1\right)-2\sqrt{4z-1}+1=0\)
<=>\(\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=\frac{1}{2}\end{matrix}\right.\)(tm)
ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)
Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))
Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)
Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
+) Với \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)
+) Với \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)
Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)
bài đầu tiên bằng -3
bài thứ hai mình ko biết
Dễ =))