K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

\(\sqrt{1+x^2}\text{ có nghĩa khi :}\)

\(1+x^2\ge0\)

mà \(1+x^2>0\text{ với mọi x nên:}\)

Với mọi x căn thức đều có nghĩa

10 tháng 9 2021

làm r mà bạn ei

10 tháng 9 2021

Chưa mà bạn

9 tháng 4 2023

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

9 tháng 4 2023

Anh làm câu b nữa ạ, sửa câu b \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:
1. Chỉ áp dụng được khi $x\geq 0$

$x-1=(\sqrt{x}-1)(\sqrt{x}+1)$

2. $x^2-1=(x-1)(x+1)$

3. $x-4=(\sqrt{x}-2)(\sqrt{x}+2)$ (chỉ áp dụng cho $x\geq 0$)

4. $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
5. $x-4\sqrt{x}+4=(\sqrt{x})^2-2.2\sqrt{x}+2^2=(\sqrt{x}-2)^2$

6. $\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2x}{x-1}$

$=\frac{x+2\sqrt{x}+1}{x-1}+\frac{2x}{x-1}=\frac{3x+2\sqrt{x}+1}{x-1}$

6 tháng 8 2021

`\sqrt((1+x)/(x^2-1))` có nghĩa `<=> (1+x)/(x^2-1) >=0 <=> {(x>1),(-1<x<1):}`

`\sqrt(3x-5)+\sqrt(2/(x-4))` có nghĩa `<=> {(3x-5>=0),(x-4>0):} <=> x>4`

a) ĐKXĐ: \(\dfrac{1+x}{x^2-1}\ge0\)

\(\Leftrightarrow\dfrac{1}{x-1}\ge0\)

\(\Leftrightarrow x-1>0\)

hay x>1

12 tháng 8 2023

1) \(\sqrt{4+x}=2-x\) (ĐK: \(x\ge-4\))

\(\Leftrightarrow4+x=\left(2-x\right)^2\)

\(\Leftrightarrow4+x=4-4x+x^2\)

\(\Leftrightarrow x^2-4x-x+4-4=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy: \(S=\left\{0;5\right\}\)

12 tháng 8 2023

2) 

a) ĐKXĐ: \(a>0,a\ne1\)

\(A=\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a}\)

\(A=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right]\cdot\dfrac{a}{\sqrt{a}+1}\)

\(A=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)

\(A=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a}{\sqrt{a}+1}\)

\(A=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\cdot\dfrac{\sqrt{a}\cdot\sqrt{a}}{\sqrt{a}+1}\)

\(A=\sqrt{a}\left(\sqrt{a}-1\right)\)

\(A=a-\sqrt{a}\)

b) Ta có:

\(A=a-\sqrt{a}\)

\(A=\left(\sqrt{a}\right)^2-2\cdot\dfrac{1}{2}\cdot\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}\)

\(A=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

Mà: \(\left(\sqrt{a}-\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi:

\(\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}=-\dfrac{1}{4}\)

\(\Leftrightarrow a=\dfrac{1}{4}\)

Vậy: \(A_{min}=-\dfrac{1}{4}\)khi \(a=\dfrac{1}{4}\)

Chọn D

11 tháng 3 2018

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.