Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\Delta=\left(a-1\right)^2+4\left(a^2-a+2\right)\)
\(=5a^2-6a+9\)\(=\left(a-\frac{3}{5}\right)^2+\frac{36}{5}>0\)
\(ac=-\left(a^2-a+2\right)< 0\)
Vậy pt trên có 2 nghiệm trái dấu với mọi a.
b. Theo Viet:\(x_1x_2=-\left(a^2-a+2\right)\)
\(M=\left(a^2-a+2\right)^2\)\(=\left[\left(a-\frac{1}{2}\right)^2+\frac{7}{4}\right]^2\ge\frac{49}{16}\)
\(M_{min}=\frac{49}{16}\Leftrightarrow a=\frac{1}{2}\)
Đk pt có 2 nghiêm pb
\(\Delta=a^2-4>0\)
=>\(a^2>4\)
=>\(\orbr{\begin{cases}a>2\\a< -2\end{cases}}\)
theo Đly Vi-et, ta có x1+x2=-a
x1.x2=1
\(\frac{x_1^2}{x_2^2}+\frac{x_2^2}{x_1^2}=\frac{x_1^4+x_2^4}{x_1^2.x_2^2}=\frac{\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2}{1}=\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-2=\left(a^2-2\right)^2-2\)
=>(a2-2)2-2 >7
=>(a2-2)2 >9
=>\(\orbr{\begin{cases}a^2-2>3\\a^2-2< -3\end{cases}=>\orbr{\begin{cases}a^2>5\\a^2< -1\left(loai\right)\end{cases}=>\orbr{\begin{cases}a>\sqrt{5}\\a< -\sqrt{5}\end{cases}}}\left(tmdk\right)}\)
Bài 2:
Để pt có 2 nghiệm phân biệt thì:
$\Delta=9-4m>0\Leftrightarrow m< \frac{9}{4}$
Áp dụng định lý Viet với 2 nghiệm $x_1,x_2$: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=m\end{matrix}\right.\)
Khi đó:
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{(x_1^2+1)(x_2^2+1)}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1^2+x_2^2)+1}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1+x_2)^2-2x_1x_2+1}=27\)
$\Leftrightarrow 9-2m+2+2\sqrt{m^2+9-2m+1}=27$
$\Leftrightarrow \sqrt{m^2-2m+10}=m+8$
\(\Rightarrow \left\{\begin{matrix} m\geq -8\\ m^2-2m+10=(m+8)^2=m^2+16m+64\end{matrix}\right.\)
\(\Rightarrow m=-3\) (thỏa mãn)
Vậy........
Bài 1:
Ta thấy $\Delta'=m^2-(m^2-2)=2>0$ với mọi $m$ nên PT có 2 nghiệm phân biệt với mọi $m$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2\end{matrix}\right.\)
Khi đó:
\(|x_1^3-x_2^3|=10\sqrt{2}\)
\(\Leftrightarrow |x_1-x_2||x_1^2+x_1x_2+x_2^2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}.|(x_1+x_2)^2-x_1x_2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{4m^2-4(m^2-2)}.|4m^2-(m^2-2)|=10\sqrt{2}\)
\(\Leftrightarrow |3m^2+2|=5\Leftrightarrow 3m^2+2=5\Leftrightarrow m=\pm 1\) (thỏa mãn)
Vậy........
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
d) Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=4m-3\end{matrix}\right.\)
Ta có: \(A=x_1^2+x_2^2+2\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)\)
\(\Rightarrow A=4m^2-8m+6-4m=4m^2-12m+6\)\(=4\left(m^2-3m+\frac{3}{2}\right)=4\left(m^2-2\cdot m\cdot\frac{3}{2}+\frac{9}{4}-\frac{3}{4}\right)=4\left(m-\frac{3}{2}\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)
a) Thay m=3 vào pt ta được:
\(x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy x = 3 là nghiệm của pt khi m = 3
b)
Xét pt: \(x^2+2mx+4m-3=0\)
có \(\Delta'=m^2-\left(4m-3\right)=m^2-4m+3=\left(m-3\right).\left(m-1\right)\)
để pt có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow\left(m-3\right).\left(m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy m \(\in\left\{1;3\right\}\) là giá trị cần tìm
để pt có 2 nghiệm đều âm thì denta >=0
S<0
p>0
denta=(-1)2 -4(m2+m-6)>=0 <=>1-4m2 -4m+24>=0
<=>-4m2-4m+25>=0 (tm)
s=1<0 (vô lí)
p=m2 +m-6 >0 m>2(tm)
vậy không có gtrij nào của m đề pt có 2 nghiệm dều âm
Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm
Làm câu 2 trước vậy , câu 1 để sau
a, pt có nghiệm \(x=2-\sqrt{3}\)
\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)
Vì VP là số hữu tỉ
=> VT là số hữu tỉ
Mà \(\sqrt{3}\)là số vô tỉ
=> 4a + b + 15 = 0
=> 7a + 2b + 25 = 0
Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)
Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)
b, Với a = -5 ; b = 5 ta có pt:
\(x^3-5x^2+5x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)
Giả sử x1 = 1 là 1 nghiệm của pt ban đầu
x2 ; x3 là 2 nghiệm của pt (1)
Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)
Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)
\(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)
\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)
\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)
\(\Leftrightarrow x^5_2+x_3^5+4=728\)
\(\Leftrightarrow x_2^5+x_3^5=724\)
Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
\(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)
\(=1+724\)
\(=725\)
Vậy .........
Câu 1 đây , lừa người quá
Giả sử pt có 2 nghiệm x1 ; x2
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)
\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)
Lại có \(x_1+x_2=m^2\inℕ^∗\)
Mà x1 hoặc x2 nguyên
Nên suy ra \(x_1;x_2\inℕ^∗\)
Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)
\(\Leftrightarrow2m+2-m^2+1\ge0\)
\(\Leftrightarrow-1\le m\le3\)
Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)
Thử lại thấy m = 3 thỏa mãn
Vậy m = 3
a.Thay p=3 vào pt ta có:
x2+3x-4=0 mà a+b+c=0 thì ta có 2 ng là 1 và -4
b.theo viet ta có x1+x2=-p/2 và x1.x2=-4
nên từ gt đã cho ta có x1.x22+x1+x22+x2>6
x1.x2(x1+x2)+x1+x2>6
2p+(-p/2)>6
3p>12
p>4