Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{-1}{8}\right)^{100}=\frac{\left(-1\right)^{100}}{8^{100}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{2^{300}}\)
\(\left(\frac{-1}{4}\right)^{200}=\frac{\left(-1\right)^{200}}{4^{200}}=\frac{1}{\left(2^2\right)^{100}}=\frac{1}{2^{200}}\)
Vì \(2^{300}>2^{200}\)\(\Rightarrow\frac{1}{2^{300}}< \frac{1}{2^{200}}\)
\(\Rightarrow\left(\frac{-1}{8}\right)^{^{100}}< \left(\frac{-1}{4}\right)^{200}\)
ta có:\(\left(-\frac{1}{8}\right)^{180}=\left(\frac{1}{8}\right)^{180}=\left(\frac{1}{4}\right)^{2^{180}}=\left(\frac{1}{4}\right)^{360}\)
ta có :\(\left(-\frac{1}{4}\right)^{200}=\left(\frac{1}{4}\right)^{200}\)
=>(1/4)^360<(1/4)^200
Vậy : (-1/8)^180 < ( -1/4)^200
làm được bài 1:
TA CÓ: \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{16}\right)^{200}\)
\(\left(\frac{1}{2}\right)^{1000}=\left(\frac{1}{2}\right)^{5.200}=\left(\frac{1^5}{2^5}\right)^{200}=\left(\frac{1}{32}\right)^{200}\)
vì mũ số bằng nhau nên ta so sánh phân số. Vì \(\frac{1}{16}>\frac{1}{32}\)nên \(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{32}\right)^{200}\)do đó\(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{1000}\)
ta có:1/8^100
-1/4^200=(-1/4^2)^100=1/16^100
=>1/8^100 >1/16^100
=>1/8^100 >-1/4^200
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
A = \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{200}-1\right)\)
= \(\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-199}{200}\)
= \(\frac{-1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{199}{200}\)
= \(\frac{-1}{200}\)> \(\frac{-1}{199}\)( vì 1/200 < 1/999 => - 1 / 200 > -1/199 )
\(\frac{1}{2}>\frac{1}{3}\\ \Rightarrow\left(\frac{1}{2}\right)^{200}>\left(\frac{1}{3}\right)^{200}\)
Vì 200=200 và 1/2 >1/3
=))(1/2)^200>(1/3)^300