\(\left(\frac{1}{2}\right)^{200};\left(\frac{1}{3}\right)^{200}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

\(\frac{1}{2}>\frac{1}{3}\\ \Rightarrow\left(\frac{1}{2}\right)^{200}>\left(\frac{1}{3}\right)^{200}\)

22 tháng 9 2016

Vì 200=200 và 1/2 >1/3

=))(1/2)^200>(1/3)^300

27 tháng 9 2016

Ta có:

\(\left(\frac{-1}{8}\right)^{100}=\frac{\left(-1\right)^{100}}{8^{100}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{2^{300}}\)

\(\left(\frac{-1}{4}\right)^{200}=\frac{\left(-1\right)^{200}}{4^{200}}=\frac{1}{\left(2^2\right)^{100}}=\frac{1}{2^{200}}\)

Vì \(2^{300}>2^{200}\)\(\Rightarrow\frac{1}{2^{300}}< \frac{1}{2^{200}}\)

\(\Rightarrow\left(\frac{-1}{8}\right)^{^{100}}< \left(\frac{-1}{4}\right)^{200}\)

10 tháng 9 2016

ta có:\(\left(-\frac{1}{8}\right)^{180}=\left(\frac{1}{8}\right)^{180}=\left(\frac{1}{4}\right)^{2^{180}}=\left(\frac{1}{4}\right)^{360}\) 

ta có :\(\left(-\frac{1}{4}\right)^{200}=\left(\frac{1}{4}\right)^{200}\)

=>(1/4)^360<(1/4)^200

Vậy : (-1/8)^180 < ( -1/4)^200

làm được bài 1:

TA CÓ: \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{16}\right)^{200}\)

            \(\left(\frac{1}{2}\right)^{1000}=\left(\frac{1}{2}\right)^{5.200}=\left(\frac{1^5}{2^5}\right)^{200}=\left(\frac{1}{32}\right)^{200}\)

vì mũ số bằng nhau nên ta so sánh phân số. Vì \(\frac{1}{16}>\frac{1}{32}\)nên \(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{32}\right)^{200}\)do đó\(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{1000}\)

2 tháng 11 2016

Ta có : (-1/5)^300=(-1/5^3)100=(-1/125)^100

(-1/3)^500=(-1/3^5)^100=(-1/243)^100

vì (-1/243)^100<(-1/125)^100→(-1/5)^300>(-1/3)^500

b, ta có:-(-2)^300=(2^3)^100=8^100

(-3)^200=(-3^2)^100=9^100

vì 8^100<9^100→-(-2)^300<(-3)^200

 

10 tháng 12 2016

Cac ban oi lam giup minh voi 

12 tháng 10 2016

ta có:1/8^100

       -1/4^200=(-1/4^2)^100=1/16^100

=>1/8^100 >1/16^100

=>1/8^100 >-1/4^200

23 tháng 8 2018

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

               \(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)

               \(=\frac{1.2....18.19}{2.3...19.20}\)

               \(=\frac{1}{20}>\frac{1}{21}\)

Vậy A > 1/21

27 tháng 12 2018

A = \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{200}-1\right)\)

    = \(\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-199}{200}\)

    = \(\frac{-1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{199}{200}\)

\(\frac{-1}{200}\)\(\frac{-1}{199}\)( vì 1/200 < 1/999 => - 1 / 200 > -1/199 ) 

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)Vì\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bnVí dụ : So sánh 2300 và 3200Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì...
Đọc tiếp

Cách so sánh 2 lũy thừa am và bn (\(a,b,m,n\in N;ƯCLN\left(m,n\right)>1\)) :

Ta có :\(a^m=\left(a^{\frac{m}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)};b^n=\left(b^{\frac{n}{ƯCLN\left(m,n\right)}}\right)^{ƯCLN\left(m,n\right)}\)

\(a^{\frac{m}{ƯCLN\left(m,n\right)}}\)(< ; > ; =)\(b^{\frac{n}{ƯCLN\left(m,n\right)}}\)nên am (< ; > ; =) bn

Ví dụ : So sánh 2300 và 3200

Ta có :\(2^{300}=\left(2^3\right)^{100}=8^{100};3^{200}=\left(3^2\right)^{100}=9^{100}\).Vì 8100 < 9100 nên 2300 < 3200 

Chú ý : - Cách trên chỉ đúng với a,b tự nhiên vì trong 2 lũy thừa cùng cơ số,lũy thừa có số mũ lớn hơn chưa chắc lớn hơn và ngược lại

Ví dụ : (-3)2 > (-3)3 nhưng 2 < 3 ;\(\left(\frac{1}{3}\right)^2>\left(\frac{1}{3}\right)^3\)nhưng 2 < 3

- Lũy thừa với số mũ nguyên âm hiếm dùng tới nên ko đề cập ở đây.

0