Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{-1}{8}\right)^{100}=\frac{\left(-1\right)^{100}}{8^{100}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{2^{300}}\)
\(\left(\frac{-1}{4}\right)^{200}=\frac{\left(-1\right)^{200}}{4^{200}}=\frac{1}{\left(2^2\right)^{100}}=\frac{1}{2^{200}}\)
Vì \(2^{300}>2^{200}\)\(\Rightarrow\frac{1}{2^{300}}< \frac{1}{2^{200}}\)
\(\Rightarrow\left(\frac{-1}{8}\right)^{^{100}}< \left(\frac{-1}{4}\right)^{200}\)
Bài làm
Ta có: \(\left(-\frac{1}{4}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{4}\right)^2\right]^5=\left(\frac{1}{4}\right)^{10}\)
Mà \(2< 10\)
=> \(\left(\frac{1}{4}\right)^2< \left(\frac{1}{4}\right)^{10}\)
Hay \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)
Vậy \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)
# Học tốt #
Câu a)
\(9^{200}=\left(3^2\right)^{200}=3^{400}\)
\(27^{133}=\left(3^3\right)^{133}=3^{399}\)
nên \(9^{200}>27^{133}\)
b) \(9^5=3^{2\cdot5}=3^{10}\)
\(27^3=3^{3\cdot3}=3^9\)
=> tự kết luận
c) \(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}^3\right)^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}^5\right)^4=\left(\frac{1}{2}\right)^{20}\)
=> tự kết luận
b) Ta có: \(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^9\)
Vì 10 > 9 => 310 > 39
Vậy 95 > 273
1. So sánh :
b) 9^5 và 27^3
9^5 = ( 3^2 )^5 = 3^10
27^3 = ( 3^3 )^3 = 3^9
Vì 3^10 > 3^9 => 9^5 > 27^3
Vậy 9^5 > 27^3
c) \(\left(\frac{1}{8}\right)^6\)và \(\left(\frac{1}{32}\right)^4\)
\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}\right)^{3.6}=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}\right)^{5.4}=\left(\frac{1}{2}\right)^{20}\)
Vì ( 1/2)^18 < (1/2)^20 => (1/8)^6 < (1/32)^4
Vậy (1/8)^6 < (1/32)^4
làm được bài 1:
TA CÓ: \(\left(\frac{1}{16}\right)^{200}=\left(\frac{1}{16}\right)^{200}\)
\(\left(\frac{1}{2}\right)^{1000}=\left(\frac{1}{2}\right)^{5.200}=\left(\frac{1^5}{2^5}\right)^{200}=\left(\frac{1}{32}\right)^{200}\)
vì mũ số bằng nhau nên ta so sánh phân số. Vì \(\frac{1}{16}>\frac{1}{32}\)nên \(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{32}\right)^{200}\)do đó\(\left(\frac{1}{16}\right)^{200}>\left(\frac{1}{2}\right)^{1000}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
bằng nhau
ta có:\(\left(-\frac{1}{8}\right)^{180}=\left(\frac{1}{8}\right)^{180}=\left(\frac{1}{4}\right)^{2^{180}}=\left(\frac{1}{4}\right)^{360}\)
ta có :\(\left(-\frac{1}{4}\right)^{200}=\left(\frac{1}{4}\right)^{200}\)
=>(1/4)^360<(1/4)^200
Vậy : (-1/8)^180 < ( -1/4)^200