Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
a) Ta có: \(25^{50}+3^{41}=\left(\left(25\right)^2\right)^{25}+\left(\left(3\right)^4\right)^{10}.3=625^{25}+81^{10}.3\)
\(2525^{25}+5^{31}=2525^{25}+\left(\left(5\right)^3\right)^{10}.5=2525^{25}+125^{10}.5\)
Vì \(625^{25}< 2525^{25}\),\(81^{10}.3< 125^{10}.5\)(\(81^{10}< 125^{10},3< 5\)) nên \(625^{25}+81^{10}.3< 2525^{25}+125^{10}.5\)
hay \(25^{50}+3^{41}< 2525^{25}+5^{31}\)
\(\)
b) A = 2010 . 2012
= ( 2011 - 1 )( 2011 + 1 )
= 20112 - 12 = 20112 - 1
20112 - 1 < 20112 => A < B
Câu a :
\(x^2+6x+9=\left(x+3\right)^2\)
Câu b :
\(10x-25-x^2=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
Câu c :
\(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\) \(=\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+\dfrac{1}{2}.2x+\left(\dfrac{1}{2}\right)^2\right]\)
Cau d :
\(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}\right)^2-\left(8y\right)^2=\left(\dfrac{1}{5}+8\right)\left(\dfrac{1}{5}-8\right)\)
(Mình giải theo cách lớp 8 nhé)
\(A=1^2-2^2+3^2-4^2+...+2015^2\)
\(=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(=1+\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2015-2014\right)\left(2015+2014\right)\)
\(=1+\left(2+3\right)+\left(4+5\right)+...+\left(2014+2015\right)\)
\(=1+2+3+...+2015=B\)
\(\Leftrightarrow A=B\)
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500
a)Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}=2^{30}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
Vì \(5^{30}<6^{30}\)
=>\(25^{15}<8^{10}.3^{30}\)