Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
a)Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}=2^{30}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
Vì \(5^{30}<6^{30}\)
=>\(25^{15}<8^{10}.3^{30}\)
\(\frac{-1}{2}+\frac{1}{3}+\frac{2}{4}=\frac{-6}{12}+\frac{4}{12}+\frac{6}{12}\)
= \(\frac{4}{12}\)
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
e, (x-1)(x2 + x + 1)-x(x+2)(x-2) = 5
x(x2 +x + 1 ) - (x2 + x +1 )- [ x (x2 - 4)] = 5
x3 +x2 +x - x2 - x - 1 - x3 +4x = 5
4x - 1 = 5
4x = 6
x =\(\dfrac{3}{2}\)
f, (x-1)3 - (x+3)(x2 - 3x +9 ) +3(x2 - 4) = 2
x - 3x2 +3x - 1 - [( x3 - 3x2 + 9x) + (3x2 - 9x +27)] = 2
x3 - 3x2 + 3x - 1 -x3 +3x2 -9x - 3x2 +9x - 27 +3x2 - 12 = 2
3x - 1 - 27 - 12 = 2
3x = 42
x = 14
a) Ta có: \(25^{50}+3^{41}=\left(\left(25\right)^2\right)^{25}+\left(\left(3\right)^4\right)^{10}.3=625^{25}+81^{10}.3\)
\(2525^{25}+5^{31}=2525^{25}+\left(\left(5\right)^3\right)^{10}.5=2525^{25}+125^{10}.5\)
Vì \(625^{25}< 2525^{25}\),\(81^{10}.3< 125^{10}.5\)(\(81^{10}< 125^{10},3< 5\)) nên \(625^{25}+81^{10}.3< 2525^{25}+125^{10}.5\)
hay \(25^{50}+3^{41}< 2525^{25}+5^{31}\)
\(\)