Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{a}\)+\(\frac{y}{b}\)+\(\frac{z}{c}\)=0 => \(\frac{abz+acy+bcx}{xyz}\)=0=> abz+acy+bcz= 0
Lại có \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}-2\left(\frac{abz+acy+bcx}{xyz}\right)=4\)
=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)=4
a. Đề:\(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)
Giải :\(\Rightarrow\hept{\begin{cases}2x-1=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=0+1=1\\3y=0-5=-5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{5}{3}\end{cases}}}\)
b. Đề : \(x^2+y^2-2x+10y+26=0\)
Giải : \(\Leftrightarrow x^2-2.1.x+1+y^2+2.5.y+25=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0+1=1\\y=0-5=-5\end{cases}}}\)
Đây là bài 1 bài 2 đang ghi nha
t i c k nha cảm ơn
Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1< 2^{32}\)
\(\Leftrightarrow A< B\)
a)
A = 1999.2001 = (2000-1)(2000+1)=20002-1
vì 20002 -1 < 20002 nên A<B
Mình ghi nhầm đề bài 1 tí đề bài là :
So sánh 2 số A và B biết :
A = (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1) và B = 3^32 - 1
b) A = 2010 . 2012
= ( 2011 - 1 )( 2011 + 1 )
= 20112 - 12 = 20112 - 1
20112 - 1 < 20112 => A < B