Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(20^{2006}+11^{2006}\right)^{2007}=20^{2006.2007}+2.20^{2006}.11^{2006}+11^{2006.2007}\)
\(\left(20^{2007}+11^{2007}\right)^{2006}=20^{2007.2006}+2.20^{2007}.11^{2007}+11^{2007.2006}\)
Vì \(2.20^{2006}.11^{2006}< 2.20^{2007}.11^{2007}\) nên \(\left(20^{2006}+11^{2006}\right)^{2007}< \left(20^{2007}+11^{2007}\right)^{2006}\)
Chúc bạn học tốt ~
a/b và a+2006/b+2006
=> a/b và a+2006/b/2006
==> a/b < a+2006/b+2006
Đầu tiên bạn đi chứng minh bài toán:a>b thì \(\frac{a}{b}>\frac{a+m}{b+m}\)
rồi áp dụng vào bài toán này
\(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2006}+7+1}{2^{2004}+7+1}=\frac{2^{2006}+8}{2^{2004}+8}=\frac{2^3\left(2^{2003}+1\right)}{2^3\left(2^{2001}+1\right)}=\frac{2^{2003}+1}{2^{2001}+1}\)
Vậy \(\frac{2^{2006}+7}{2^{2004}+7}>\frac{2^{2003}+1}{2^{2001}+1}\)
Đấy thế là xong!
A B C D 30 m 675 m^2 E
Đặt các điểm như hình trên thì AB = 0,6 CD ; AB + 30 m = CD (BE = 30 m) ; SABCD + 675 m2 = SAECD (SBEC = 675 m2)
AECD là hình chữ nhật nên CE là đường cao tam giác BEC ; CE = AD
=> AD = 2 x SBEC : BE = 2 x 675 : 30 = 45 (m)
AB + 30 m = CD mà AB = 0,6 CD nên 0,6 CD + 30 m = CD => 0,4 CD = 30 m => CD = 75 m => AB = 45 m
=> SABCD = (AB + CD) x AD : 2 = (75 + 45) x 45 : 2 = 2700 (m2)
\(\sqrt{2005+2006}^2=2005+2006=4011\)
\(\left(\sqrt{2005}+\sqrt{2006}\right)^2=2005+2\sqrt{2005}.\sqrt{2006}+2006=4011+2\sqrt{2005}.\sqrt{2006}\)
Vì \(2\sqrt{2005}.\sqrt{2006}>0\) nên =>\(4011<4011+2\sqrt{2005}.\sqrt{2006}\)=>\(\sqrt{2005+2006}<\sqrt{2005}+\sqrt{2006}\)
Ta có:
134012 = 132.2006 = (132)2006 = 1692006
Vì 1313 > 169 và 2006 > 0 nên 13132006 > 1692006 hay 13132006 > 134012