K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 và 1 + √2
ta có :
1 + √2
= 1,5 + 1 
= 2,5
<=> 2 và 2,5
<=> 2 < 2,5
<=> 2 < 1 + √2

21 tháng 6 2019

\(\sqrt{3}< \sqrt{4}\)

\(\Rightarrow\sqrt{3}-1< \sqrt{4}-1\)

\(\Rightarrow\sqrt{3}-1< 2-1=1\)

16 tháng 6 2017

a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

b/ Ta có:

\(\sqrt{n}< \sqrt{n+1}\)

\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng vào bài toán được

\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)

\(=2\left(\sqrt{37}-1\right)>6\)

17 tháng 6 2019

a)\(1+\sqrt{3}>1+\sqrt{1}=1+1=2\)

Vậy \(1+\sqrt{3}>2\)

c) \(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)

Vậy \(\sqrt{3}-1< 1\)

e) \(\sqrt{2}+\sqrt{5}< \sqrt{16}+\sqrt{16}=4+4=8\)

Vậy \(\sqrt{2}+\sqrt{5}< 8\)

6 tháng 6 2019

\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)

\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)

\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)

27 tháng 6 2017

\(\sqrt{12}-\sqrt{11}\)   bé hơn \(\sqrt{11}-\sqrt{10}\) 

14 tháng 8 2018

a)So sánh vs 5/2

b)So sánh vs 40/9

17 tháng 6 2017

so sánh  bình phương 2 vế nếu vế đầu^2 lớn hown vế sau^2 thì vế đầu nhỏ hơn vế 2 và ngược lại

4 tháng 8 2020

\(4\)và \(1+2\sqrt{2}\)

Ta có \(3=\sqrt{9}\)

           \(2\sqrt{2}=\sqrt{2^2.2}=\sqrt{8}\)

Ta lại có \(8< 9\Leftrightarrow\sqrt{8}< \sqrt{9}\)

Hay \(2\sqrt{2}< 3\)\(\Leftrightarrow1+2\sqrt{2}< 1+3\Leftrightarrow1+2\sqrt{2}< 4\)

4 tháng 8 2020

\(4\)và \(2\sqrt{6}-1\)

Ta có \(5=\sqrt{25}\)

          \(2\sqrt{6}=\sqrt{2^2.6}=\sqrt{24}\)

Ta lại có \(25>24\Leftrightarrow\sqrt{25}>\sqrt{24}\)

Hay \(5>2\sqrt{6}\Leftrightarrow5-1>2\sqrt{6}-1\Leftrightarrow4>2\sqrt{6}-1\)