K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Bài 2:

\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)

Với mọi \(n\inℕ^∗\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)

\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)

17 tháng 7 2019

Bài 1: chắc lại phải "liên hợp" gì đó rồi:V

\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)

Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)

Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)

Với \(n\ge3\). Lời giải xin mời các bạn:)

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

18 tháng 7 2016

\(tacó:...\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}>\frac{1}{3.2}=\frac{1}{\left(1+2.1\right).2.1}\) 

\(\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}>\frac{1}{5.4}=\frac{1}{\left(1+2.2\right).2.2}\) 

\(\frac{1}{7.\left(\sqrt{3}+\sqrt{4}\right)}>\frac{1}{7.6}=\frac{1}{\left(1+2..3\right).2.3}\) 

....

\(\frac{1}{49.\left(\sqrt{48}+\sqrt{49}\right)}>\frac{1}{49.48}=\frac{1}{\left(1+2.48\right).2.48}\) 

cộng vế theo vế ta đươc S =\(\frac{1}{\left(1+2.1\right).2}+\frac{1}{\left(1+2.2\right).2.2}+...+\frac{1}{\left(1+2.48\right).48.2}\)

\(=\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{10}+\frac{1}{21}+\frac{1}{36}+...+\frac{1}{4656}\right)\)  <  \(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4656}\right)\)

mà lại có : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+..+\frac{1}{4656}\) 

=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9312}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{96.97}\) 

             = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{97}=\frac{1}{2}-\frac{1}{97}=\frac{95}{194}\)  

vậy S < \(\frac{95}{194}\) 

mà \(\frac{95}{194}< \frac{3}{7}\) 

=> S < \(\frac{3}{7}\)

KẾT LUẬN  : S <\(\frac{3}{7}\)

 

 

5 tháng 5 2015

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}-\sqrt{3}\right).\left(\sqrt{4}+\sqrt{3}\right)}+...+\frac{\sqrt{121}-\sqrt{120}}{\left(\sqrt{121}-\sqrt{120}\right)\left(\sqrt{121}+\sqrt{120}\right)}\)

\(A=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{121}-\sqrt{120}}{121-120}\)

\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)

\(A=\sqrt{121}-\sqrt{1}=10\)

\(B=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)

\(B=2.\left(\frac{1}{\sqrt{1}+\sqrt{1}}+\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{35}+\sqrt{35}}\right)\)

\(>2.\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(>2.\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)

\(=2.\left(\sqrt{36}-\sqrt{1}\right)=2.\left(6-1\right)=10=A\)

Vậy B > A

 

17 tháng 8 2017

Ta có:

\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)

\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)

Suy ra:

\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)

Vậy Q < R.

26 tháng 8 2020

B2:

3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)

\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

16 tháng 6 2017

a/ \(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)

\(\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)

b/ Ta có:

\(\sqrt{n}< \sqrt{n+1}\)

\(\Rightarrow2\sqrt{n}< \sqrt{n+1}+\sqrt{n}\)

\(\Rightarrow\dfrac{1}{\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng vào bài toán được

\(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{36}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{37}-\sqrt{36}\right)\)

\(=2\left(\sqrt{37}-1\right)>6\)

21 tháng 6 2017

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+....+\frac{1}{\sqrt{100}}\)

\(\Leftrightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>100.\frac{1}{\sqrt{100}}=10.\)