Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)
Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)
Suy ra A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2
Vậy A < 2
\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)
\(S=1+2+2^2+...........+2^{50}\)
\(\Leftrightarrow2S=2+2^2+...........+2^{50}+2^{51}\)
\(\Leftrightarrow2S-S=\left(2+2^2+.........+2^{51}\right)-\left(1+2+2^2+..........+2^{50}\right)\)
\(\Leftrightarrow S=2^{51}-1\)
\(\Leftrightarrow S< 2^{51}\)
a) \(\frac{-18}{91}\) và \(\frac{-23}{114}\)
\(\frac{-18}{91}=\frac{-18.114}{91.114}=\frac{-2052}{\text{10374}}\)
\(\frac{-23}{114}=\frac{-23.91}{114.91}=\frac{\text{-2093}}{10374}\)
Ta có:
\(\frac{-2052}{10374}< \frac{-2093}{10374}\)
\(\Rightarrow\)\(\frac{-18}{91}< \frac{-23}{114}\)
b) \(\frac{-22}{35}\) và \(\frac{-103}{177}\)
\(\frac{-22}{35}=\frac{-22.177}{35.177}=\frac{\text{-3894}}{\text{6195}}\)
\(\frac{-103}{177}=\frac{-103.35}{177.35}=\frac{\text{-3605}}{6195}\)
Ta có:
\(\frac{-3894}{6195}< \frac{-3605}{6195}\)
\(\Rightarrow\)\(\frac{-22}{35}< \frac{-103}{177}\)
Giải:
a) \(A=1+2+2^2+2^3+...+2^{2021}\)
\(2A=2+2^2+2^3+2^4+...+2^{2022}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)
\(A=2^{2022}-1\)
Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\)
b) Từ câu (a), ta có:
\(A=2^{2022}-1\)
\(A=2^{2020}.2^2-1\)
\(A=\left(2^4\right)^{505}.4-1\)
\(A=16^{505}.4-1\)
\(A=\left(\overline{...6}\right)^{505}.4-1\)
\(A=\overline{...6}.4-1\)
\(A=\overline{...4}-1\)
\(A=\overline{...3}\)
Vậy chữ số tận cùng của A là 3
c) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\)
\(A=1.3+2^2.3+...+2^{2020}.3\)
\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\)
Vậy \(A⋮3\left(đpcm\right)\)
d) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\)
\(A=1.7+2^3.7+...+2^{2019}.7\)
\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)
Vậy \(A⋮7\left(đpcm\right)\)
Chúc bạn học tốt!
có phép trừ ko
nếu ko có thì tổng đó lớn hơn 251
rõ ràng mà