Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
a) 5^23 và 6 . 5^22
Ta có: 5^23 = 5^22 . 5
Vì 5 < 6 nên 5^23 < 6 . 5^22
b) 7 . 2^13 và 2^16
Ta có: 2^16 = 2^13 . 2^3 = 2^13 . 8
Vì 7 < 8 nên 7 . 2^13 < 2^16
c) 21^15 và 27^5 . 49^8
Ta có: 21^15 = (3.7)^15 = 3^15 . 7^15
27^5 . 49^8 = (3^3)^5 . (7^2)^8 = 3^15 . 7^16
Vì 7^15 < 7^16 nên 21^15 < 27^5 . 49^8
a) 2711 và 818
\(27^{11}=\left(3^3\right)^{11}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{4.8}=3^{32}\)
Vì 333 > 332 ⇒ 2711 >818
b) 523 và 6 . 522
\(5^{23}=5^{22}.5\)
Vì 522 . 5 < 6 . 522 ⇒ 523 < 6 . 522
\(\frac{10^{20}+1}{10^{22}+1}=\frac{10^{20}+\frac{1}{100}+\frac{99}{100}}{10^{22}+1}=\frac{1}{100}+\frac{99}{100\left(10^{22}+1\right)}\)
\(\frac{10^{22}+1}{10^{24}+1}=\frac{10^{22}+\frac{1}{100}+\frac{99}{100}}{10^{24}+1}=\frac{1}{100}+\frac{99}{100\left(10^{24}+1\right)}\)
Có \(10^{22}+1< 10^{24}+1\Rightarrow\frac{99}{100\left(10^{22}+1\right)}>\frac{99}{100\left(10^{24}+1\right)}\)
do đó \(\frac{10^{20}+1}{10^{22}+1}>\frac{10^{22}+1}{10^{24}+1}\).
a,
15^12=(3*5)^12=3^12*5^12
81^3*125^5=(3^4)^3*(5^3)^5=3^12*5^15
Vì 12<15 suy ra 5^12<5^15
Suy ra 3^12*5^12<3^12*5^15
\(a.81^3.125^5=\left(3^4\right)^3.\left(5^3\right)^5=3^{12}.5^{15}=3^{12}.5^{12}.5^3=\left(3.5\right)^{12}.5^3=15^{12}.5^3>15^{12}\)
\(b.4^{20}.81^{12}=\left(2^2\right)^{20}.\left(9^2\right)^{12}=2^{40}.9^{24}=2^{20}.2^{20}.9^{20}.9^4=\left(2.9\right)^{20}.2^{20}.9^4=18^{20}.2^{20}.9^4>18^{20}\)
\(c.73^{75}=\left(73^3\right)^{25}=389017^{25}\)
\(107^{50}=107^{2.50}=\left(107^2\right)^{25}=11449^{25}\)
Vì \(389017^{25}>11449^{25}\Rightarrow73^{75}>107^{50}\)
27 mũ 11 và 81 mũ 8
625 mũ 5 và 125 mũ 7
5 mũ 36 và 11 mũ 24
5 mũ 23 và 6,5 mũ 22
7.2 mũ 13 và 2 mũ 16
So sánh: 1920 và 98.516
98.516=(32)8.516=316.516=(3.5)16=1516
Vì 19>15 và 20>16
Nên 1920 > 98.516
N= mũ 23+8=mũ31