\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2011}}+\frac{1}{3^{2012}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Ta có:

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2011}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2011}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2012}}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^{2012}}\)

\(\Rightarrow A=\left(1-\frac{1}{3^{2012}}\right).\frac{1}{2}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{3^{2012}}\)

\(\frac{1}{2}-\frac{1}{3^{2012}}< \frac{1}{2}\) nên \(A< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)

 

21 tháng 12 2017

\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)

\(\frac{1}{5}A=\frac{1}{5}\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\right)=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)

\(A-\frac{1}{5}A=\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\left(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\right)\)

\(\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\frac{1}{5^2}-\frac{1}{5^3}-...-\frac{1}{5^{2013}}\)

\(\frac{4}{5}A=\frac{1}{5}-\frac{1}{5^{2013}}=\frac{5^{2012}-1}{5^{2013}}\)

\(A=\frac{5^{2012}-1}{5^{2013}}:\frac{4}{5}=\frac{5^{2012}-1}{5^{2013}}\times\frac{5}{4}=\frac{5^{2012}-1}{4.5^{2012}}=\frac{1}{4}-\frac{1}{4.5^{2012}}< \frac{1}{4}\)

14 tháng 8 2017

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

1 tháng 7 2021

\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)

\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)

\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)

\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)

=> A > B

Vậy A > B

25 tháng 9 2016

thêm số hạng 1 vào bên phải nha

27 tháng 1 2020

Xét \( A = 1 + \dfrac{{2014}}{2} + \dfrac{{2015}}{3} + ... + \dfrac{{4023}}{{2011}} + \dfrac{{4024}}{{2012}}\\ \)

\(\Rightarrow A - 2012 = \left( {\dfrac{{2014}}{2} - 1} \right) + \left( {\dfrac{{2015}}{3} - 1} \right) + ... + \left( {\dfrac{{4024}}{{2012}} - 1} \right)\\ \Rightarrow A - 2012 = \dfrac{{2012}}{2} + \dfrac{{2012}}{3} + ... + \dfrac{{2012}}{{2012}}\\ \Rightarrow A - 2012 = 2012\left( {\dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow A = 2012\left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow \left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)503x = 2012\left( {1 + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow x = \dfrac{{2012}}{{503}} = 4 \)

15 tháng 2 2017

\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)

\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)

17 tháng 10 2018

\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)

\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)

Vậy \(\frac{B}{A}=2012\)

Chúc bạn học tốt ~ 

17 tháng 10 2018

cảm ơn bạn