\(\frac{1}{5}\)+ \(\frac{1}{5^2}\)\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)

\(\frac{1}{5}A=\frac{1}{5}\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\right)=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)

\(A-\frac{1}{5}A=\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\left(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\right)\)

\(\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\frac{1}{5^2}-\frac{1}{5^3}-...-\frac{1}{5^{2013}}\)

\(\frac{4}{5}A=\frac{1}{5}-\frac{1}{5^{2013}}=\frac{5^{2012}-1}{5^{2013}}\)

\(A=\frac{5^{2012}-1}{5^{2013}}:\frac{4}{5}=\frac{5^{2012}-1}{5^{2013}}\times\frac{5}{4}=\frac{5^{2012}-1}{4.5^{2012}}=\frac{1}{4}-\frac{1}{4.5^{2012}}< \frac{1}{4}\)

26 tháng 3 2020

25S = 1 - 1/52+1/54- 1/56+.......+1/52008- 1/52010

Cộng 2 vế với S ta có :

26S = 1 - 1/52012 < 1  suy ra S< 1/26

26 tháng 3 2020

\(5^2.S=1-\frac{1}{5^2}+\frac{1}{5^4}-.....+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)

\(25S=1-\frac{1}{5^2}+\frac{1}{5^4}-...+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)Cộng 2 vế với S ta có 

\(26S=1-\frac{1}{5^{2012}}\)\(\Rightarrow26S< 1\Rightarrow S< \frac{1}{26}\)

1 tháng 7 2021

\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)

\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)

\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)

\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)

=> A > B

Vậy A > B

4 tháng 9 2019

Giải giúp mình nhé

Mình đang cần gấp

4 tháng 9 2019

Bài 1

\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)

\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)

\(=>\left|x+4,3\right|-2,8=0\)

\(=>\left|x+4,3\right|=0+2,8=2,8\)

\(=>x+4,3=\pm2,8\)

\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)

\(c,\left|x\right|+x=\frac{2}{3}\)

\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)

18 tháng 6 2019

1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)

\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)

\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)

\(\Leftrightarrow x=-16\)

2)3)4) tương tự

Gợi ý : 2) cộng 3 vào cả hai vế

3)4) cộng 2 vào cả hai vế

5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)

\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)

\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)

\(\Leftrightarrow x=-21\)

6) sửa VT = 4 rồi tương tự câu 5)

23 tháng 6 2019

Bạn ơi cho mình hỏi " 0 " tự nhiên ở đâu xuất hiện v ?

2: =>2x-1/4=5/6-1/2x

=>5/2x=5/6+1/4=13/12

=>x=13/30

3: =>3x-5/6=2/3-1/2x

=>3,5x=2/3+5/6=4/6+5/6=9/6=3,2

hay x=32/35

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok