Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)16^{19}=\left(8\times2\right)^{19}=8^{19}\times2^{19}>8^{19}>8^{15}\)
\(\Rightarrow16^{19}>8^{15}\)
\(b)81^8=\left(3^4\right)^8=3^{24}< 3^{33}=\left(3^3\right)^{11}=27^{11}\)
\(\Rightarrow27^{11}>81^8\)
\(c)625^5=\left(5^4\right)^5=5^{20}< 5^{21}=\left(5^3\right)^7=125^7\)
\(\Rightarrow125^7>625^5\)
\(d)244^{11}>243^{11}=\left(3^5\right)^{11}=3^{55}>3^{52}=\left(3^4\right)^{13}=81^{13}>80^{13}\)
\(\Rightarrow244^{11}>80^{13}\)
\(d)31^{17}>17^{17}>17^{14}\)
\(\Rightarrow31^{17}>17^{14}\)
a,Ta co : ghi lai de
\(5^{30}=\left(5^3\right)^{10}=125^{10}\)
Ta thay :\(125^{10}>124^{10}\)
Vay:...........
b,lam giog nhu bai tren
b) Ta có : \(31^{11}\) < \(32^{11}\)
\(\Rightarrow\) \(32^{11}=2^{55}\) \(\left(1\right)\)
Ta lại có : \(17^{14}\) > \(16^{14}\)
\(\Rightarrow\) \(16^{14}=2^{56}\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(2^{55}<2^{56}\)
Vậy \(31^{11}<17^{14}\)
a)Đáng lẽ đề là \(5^{14}\) và \(26^8\) (Nếu đề như trên thì đơn giản nên mình sửa đề lại)
Ta có \(26^8>25^8=\left(5^2\right)^8=5^{16}\)
Mà \(5^{16}>5^{14}\Rightarrow25^8>5^{14}\Rightarrow26^8>5^{14}\)
b)\(31^{11}và17^{14}\)
Ta có \(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\) (1)
và\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\) (2)
Từ 1 vs 2 \(\Rightarrow31^{11}< 2^{55}< 2^{56}< 17^{14}\Rightarrow31^{11}< 17^{14}\)
714 và 507 =(72)7=497
Vì 50>49
Nên 507<714
Những câu còn lại tương tự
b) Áp dụng tính chất
\(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Ta có: \(B=\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10.\left(10^{15}+1\right)}{10.\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow B< A\)
\(B< 1\Rightarrow\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}=\frac{10^{16}+10}{10^{17}+10}=\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}=\frac{10^{15}+1}{10^{16}+1}=A\)
\(\Rightarrow A>B\)
3111<3211=(25)11=255
=>311<255
1714>1614=(24)14=256
=>1714>256
mà 255<256 ( 55<56)
nên 3111<255<256<1714
vậy 3111<1714