Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.9920và 999910
=(992)10=980110
Vậy 980110<999910 suy ra 9920<999910
Câu 2. 3500và 7300
3500=(35)100=243100
7300=(73)100=343100
Vậy 243100<343100 => 3500<7300
f: 11^1979<11^1980=1331^660
37^1320=(37^2)^660=1369^660
1331<1369
=>1331^660<1369^660
=>11^1980<37^1320
=>11^1979<37^1320
g: 10^10=2^10*5^10
48*50^5=2^4*3*2^5*5^10=2^9*3*5^10
2^10<2^9*3
=>2^10*5^10<2^9*3*5^10
=>10^10<48*50^5
a)3500 = (35)100 = 243100
7300 = (73)100 = 343100
243100 < 343100 => 3500 < 7300
a) \(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Ta thấy \(99.100>99.99\Rightarrow\left(99.99\right)^{10}< \left(99.101\right)^{10}\Leftrightarrow99^{20}< 9999^{10}\)
b) Ta có : \(202^{303}=\left[\left(2.101\right)^3\right]^{101}=8^{101}.101^{303}\)
\(303^{202}=\left[\left(3.101\right)^2\right]^{101}=9^{101}.101^{202}\)
Tự làm tiếp nha bn
a)9920 và 99910
Ta có:ƯCLN(20;10)=10
\(\Rightarrow99^{20}=\left(99^2\right)^{10}\)
\(9999^{10}=\left(9999^1\right)^{10}\)
\(99^2=9801< 9999\)
\(\Rightarrow99^{20}< 9999^{10}\)
\(202^{303}=\left(101.2\right)^{303}=101^{606}\)
\(303^{202}=\left(101.3\right)^{202}=101^{606}\)
Vì 101606 = 101606 nên 202303 = 303202
Lời giải:
$1990^{10}+1990^9=1990^9(1990+1)=1991.1990^9< 1991.1991^9=1991^{10}$
-----------------------
$10^{10}=(10^2)^5=100^5=(2.50)^5=2^5.50^5=32.50^5< 48.50^5$
------------------------
$11^{1979}< 11^{1980}=(11^3)^{660}=1331^{660}$
$37^{1320}=(37^2)^{660}=1369^{660}> 1331^{660}$
$\Rightarrow 11^{1979}< 37^{1320}$
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9