K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2018

a) \(99^{20}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)

\(9999^{10}=\left(99.101\right)^{10}\)

Ta thấy \(99.100>99.99\Rightarrow\left(99.99\right)^{10}< \left(99.101\right)^{10}\Leftrightarrow99^{20}< 9999^{10}\)

b) Ta có : \(202^{303}=\left[\left(2.101\right)^3\right]^{101}=8^{101}.101^{303}\)

\(303^{202}=\left[\left(3.101\right)^2\right]^{101}=9^{101}.101^{202}\)

Tự làm tiếp nha bn

4 tháng 6 2018

a)9920 và 99910

Ta có:ƯCLN(20;10)=10

\(\Rightarrow99^{20}=\left(99^2\right)^{10}\)

\(9999^{10}=\left(9999^1\right)^{10}\)

\(99^2=9801< 9999\)

\(\Rightarrow99^{20}< 9999^{10}\)

30 tháng 3 2017

đề là gì vậy bạn

Gọi 199010+19909 là A

Gọi 199110 là B

A=199010+19909=19909(1990+1)=19909.1991

B=199110=19919.1991

Vậy A<B

8 tháng 11 2017

Đáp án cần chọn là: A

9 tháng 9 2021

Ý A nhé bạn

chúc học tốt

4 tháng 10 2023

ko bít nữa

 

4 tháng 10 2023

202³⁰³ = (202³)¹⁰¹ = 8242408¹⁰¹

303²⁰² = (303²)¹⁰¹ = 91809¹⁰¹

Do 8242408 > 91809 nên 8282408¹⁰¹ > 91809¹⁰¹

Vậy 202³⁰³ > 303²⁰²

17 tháng 4 2015

         Bạn nguyen quang huy sai rồi!!!

Vì 1000/2009>1000/2009+2010 (1)

     1010/2010>1010/2009+2010  (2)

  Ta cộng theo vế (1) và (2) với nhau nên ta được:

    1000/2009+1010/2010>1000/2009+2010 +1010/2009+2010

=>1000/2009+1010/2010>1000+1010/2009+2010

Vậy A<B

Chắc chắn 100% luôn, không sai đâu!!!!!!!

17 tháng 4 2015

bằng nhau vì 2 biểu thức giống nhau

5 tháng 10 2021

\(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)

5 tháng 10 2021

Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)

Ta thấy: \(9801< 9999\)

=> \(99^{20}< 9999^{10}\)

\(\text{#040911}\)

\(a,\)

\(202^{303}\text{ và }303^{202}\)

Ta có:

\(202^{303}=\left(202^3\right)^{101}=\left(101^3\cdot2^3\right)^{101}=\left(101^3\cdot8\right)^{101}\)

\(303^{202}=\left(303^2\right)^{101}=\left(101^2\cdot3^2\right)^{101}=\left(101^2\cdot9\right)^{101}\)

Ta có:

\(8\cdot101^3=8\cdot101\cdot101^2=808\cdot101^2\)

Vì \(808>9\)

\(\Rightarrow808\cdot101^2>9\cdot101^2\)

\(\Rightarrow202^{303}>303^{202}\)

\(b,\)

Ta có:

\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\\ 37^{1320}=\left(37^2\right)^{660}=1369^{660}\\ \text{Vì }1331< 1369\\ \Rightarrow1331^{660}< 1369^{660}\\ \Rightarrow11^{1979}< 37^{1320}\)

8 tháng 9 2023

mình cần gấp, giúp mình với 

18 tháng 10 2021

a: \(11^{14}< 11^{15}\)

b: \(4^{300}=64^{100}\)

\(3^{400}=81^{100}\)

mà 64<81

nên \(4^{300}< 3^{400}\)

18 tháng 10 2021

Cj có thể viết lý luận ra ko ạ

20 tháng 2 2021

a) 536 và 1124

Ta có: 536= (53)12=12512  (1)

             1124=(112)12=12112 (2)

Từ (1) và (2) => 536>1124

tương tự.....

 

20 tháng 2 2021

Đáp án là :

câu 20 :625 < 1257

câu 21 :536 > 1124

câu 22 :32n < 23n

câu 23 :523 < 6.522

câu 24 :1124 <19920

câu 25 :399 > 112

a) \(243^5=\left(3^5\right)^5=3^{25}\)

\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)

mà \(3^{25}>3^{16}\)

nên \(243^5>3\cdot27^5\)

b) \(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}\)

mà \(5^{20}< 5^{21}\)

nên \(625^5< 125^7\)

c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)

\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)

mà \(8242408^{101}>91809^{101}\)

nên \(202^{303}>303^{202}\)

 

14 tháng 9 2021

a, Có 3^{1234} = (3^2)^{617} = 9^{617} và 2^{1851} = (2^3)^{617} = 8^{617} => 3^{1234} > 2^{1851}

b, Có 6^{30} = (6^2)^{15} = 36^{15} => 6^{30} > 12^{15}

26 tháng 1 2023

37,37 x 5959,59 = 37 x 1,01 x 59 x 101,01 = 37 x 59 x 1,01 x 101,01

59,59 x 3737,37 = 59 x 1,01 x 37 x 101,01 = 37 x 59 x 1,01 x 101,01

=> 37,37 x 5959,59 = 59,59 x 3737,37
                                              Kick mik nha