Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 266 . 734 = 232 . 234 . 734 < (2.2.7)34 = 2834
Vậy 2834 > 266 . 734
Tương tự
Bài 1 :
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Leftrightarrow2^{225}< 3^{150}\)
b) Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Leftrightarrow2^{91}>5^{35}\)
c)Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
d) Ta có :
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}< 3^{222}=\left(3^2\right)^{111}=9^{111}\)
Mà \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
Bài 2 :
a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{4}\right)^3=3^3=27\)
b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)
c) \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.5^{20}}{3^{15}.5^{30}}=3^5=243\)
Bài 1:
a.Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\) nên \(2^{225}< 3^{150}\)
b. Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\) nên \(2^{91}>5^{35}\)
c. Ta có :
\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\)
Vì \(9^{2000}=9^{2000}\) nên \(3^{4000}=9^{2000}\)
Bài 2:
a. \(\dfrac{120^3}{30^3}=\dfrac{\left(30.4\right)^3}{30^3}=\dfrac{30^3.4^3}{30^3}=4^3=64\)
b. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5=243\)
c. \(\dfrac{390^4}{130^4}=\dfrac{\left(130.3\right)^4}{130^4}=\dfrac{130^4.3^4}{130^4}=3^4=81\)
a) Ta có : \(31^5< 32^5=\left(2^5\right)^5=2^{25}< 2^{28}=\left(2^4\right)^7=16^7< 17^7\)
\(\Rightarrow31^5< 17^7\)
b) Ta có : \(8^{12}=\left(2^3\right)^{12}=2^{36}>2^{32}=\left(2^4\right)^8=16^8>12^8\)
\(\Rightarrow8^{12}>12^8\)
c) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{99}\)
\(A=\frac{1-\frac{1}{99}}{2}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
a) \(31^5< 34^5=2^5.17^5=32.17^5\)
\(17^7=17^2.17^5=289.17^5\)
\(\Rightarrow31^5< 17^7\)
b) \(12^8< 16^8=\left(2^4\right)^8=2^{32}\)
\(8^{12}=\left(2^3\right)^{12}=2^{36}\)
\(\Rightarrow8^{12}>12^8\)
c) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3A-A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{1}{3^{99}}\)
\(\Rightarrow2A=1-\frac{1}{3^{99}}< 1\Rightarrow A< \frac{1}{2}\)
a, 2225 = 215.15= ( 215)15 = 3276815
3150 = 310.15 = ( 310)15 = 5904915
Dễ thấy 32768 < 59049 nên 2225 < 3150
a, 2225 = (23)75 = 875
3150 = (32)75 = 975
Vì 875 < 975 nên 2225 < 3150
b, 334 > 330 = (33)10 = 2710
521 > 520 = (52)10 = 2510
Vì 2710 > 2510 => 330 > 520 => 334 > 521
c, 321 > 320 = (32)10 = 910
231 > 230 = (23)10 = 810
Vì 910 > 810 => 321 > 231
d, 291 > 290 = (25)18 = 3218
535 < 536 = (52)18 = 2518
Vì 3218 > 2518 => 291 > 535
e, 9920 = (992)10 = 980110 < 999910
f, 128.912 = 38.48.324 = 332.212
1816 = 216.916 = 216.332
Vì 332 . 212 < 216.332 => 128.912 < 1816
g, 7520 = 2520.320 = 540.320
4510.530 = 510.910.530 = 540.320
Vậy 7520 = 4510.530
a) Ta có: \(2^{225}=2^{3.75}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=3^{2.75}=\left(3^2\right)^{75}=9^{75}\)
\(\Rightarrow8^{75}< 9^{75}\)\(\Rightarrow2^{225}< 3^{150}\)
b) Ta có : \(2^{91}=2^{7.13}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
\(\Rightarrow8192^7>3125^7\)\(\Rightarrow2^{91}>3^{35}\)
c) Ta có: \(99^{20}=99^{2.10}=\left(99^2\right)^{10}=\left(99.99\right)^{10}\)
\(9999^{10}=\left(99.101\right)^{10}\)
Vì 99<101 \(\Rightarrow\left(99.99\right)^{10}< \left(99.101\right)^{10}\)\(\Rightarrow99^{20}< 9999^{10}\)