K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

Đề bài yêu cầu gì?

19 tháng 12 2021

Tìm B

5 tháng 11 2021

 2018^2019+1/2018^2020+1 bé hơn 2018^2020+1/2018^2021+1 

5 tháng 1 2020

Xét 2017 /2018 và 2018/2019

1-2017/2018=1/2018

1-2018/2019=1/2019

mà 1/2018>1/2019=>2017/2018<2018/2019

Tương tự có:2020/2019>2021/2020

=>2017/2018+2010/2019<2018/2019+2021/2020

20 tháng 8 2020

\(7^{2019}-7^{2020}=7^{2019}\left(1-7\right)\)

\(7^{2018}-7^{2019}=7^{2018}\left(1-7\right)\)

Mà \(7^{2019}>7^{2018}\)

\(\Rightarrow7^{2019}-7^{2020}>7^{2018}-7^{2019}\)

# Học tốt

20 tháng 8 2020

\(7^{2019}-7^{2020}=7^{2019}-7\cdot7^{2019}=-6.7^{2019}\)  

\(7^{2018}-7^{2019}=7^{2018}-7\cdot7^{2018}=-6\cdot7^{2018}\)

vì \(7^{2019}>7^{2018}\Rightarrow-6\cdot7^{2019}< -6\cdot7^{2018}\)   

Vậy \(7^{2019}-7^{2020}< 7^{2018}-7^{2019}\)

2 tháng 1 2020

\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)

\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x>y\)

4 tháng 12 2019

Ta có : \(\hept{\begin{cases}\frac{2019}{2020}< 1\\\frac{2018}{2018}=1\end{cases}\Rightarrow\frac{2019}{2020}< \frac{2018}{2018}}\)

4 tháng 12 2019

Ta có : 

\(\frac{2019}{2020}< 1\)

\(\frac{2018}{2018}=1\)

\(\Rightarrow\frac{2019}{2020}< \frac{2018}{2018}\)

#Riin