Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111
\(S=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2025}-\sqrt{2024}}\)
Ta nhận xét thấy mỗi số hạng trong S đều dương. Từ đó ta đặt
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}+...+\frac{1}{\sqrt{2024}-\sqrt{2023}}\left(A>0\right)\)
\(\Rightarrow S=A+\frac{1}{\sqrt{2025}-\sqrt{2024}}=A+\frac{\sqrt{2025}+\sqrt{2024}}{\left(\sqrt{2025}-\sqrt{2024}\right)\left(\sqrt{2025}+\sqrt{2024}\right)}\)
\(=A+\sqrt{2025}+\sqrt{2024}>\sqrt{2025}=45\)
Vậy \(S>45\)
PS: Phan Thanh Tịnh xem lại bài giải nhé bạn
Ta có : 1 = (n + 1) - n =\(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\)
\(=\left(\sqrt{n+1}\right)^2-\sqrt{n+1}.\sqrt{n}+\sqrt{n+1}.\sqrt{n}+\left(\sqrt{n}\right)^2\)
\(=\sqrt{n+1}.\left(\sqrt{n+1}-\sqrt{n}\right)+\sqrt{n}.\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n-1}+\sqrt{n}\right)\)\
\(\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Áp dụng vào bài toán,ta có :
\(S=\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}=\sqrt{2025}\)= 45
Vậy S = 45
\(\frac{2015}{2016}< \frac{2016}{2016}=1=\frac{2034}{2034}< \frac{2035}{2034}\)
\(\Rightarrow\frac{2015}{2016}< \frac{2035}{2034}\)
\(\frac{-2025}{2024}< \frac{-2024}{2024}=-1< \frac{-2026}{2027}\)
\(\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)
#)Giải :
a) Ta có :
\(1-\frac{2015}{2016}=\frac{1}{2016}\)
\(1-\frac{2035}{2036}=\frac{1}{2036}\)
Vì \(\frac{1}{2016}>\frac{1}{2036}\Rightarrow\frac{2015}{2016}>\frac{2035}{2036}\)
b) Ta có :
\(1+\frac{-2025}{2024}=\frac{-1}{2024}\)
\(1+-\frac{2026}{2027}=\frac{-1}{2027}\)
Vì \(\frac{-1}{2024}< \frac{-1}{2027}\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)
c, |2\(x\) + 1| + |3\(x\) - 1| = 0
vì |2\(x\) + 1| ≥ 0; |3\(x\) - 1| = 0
⇒ |2\(x\) + 1| + |3\(x\) - 1| = 0
⇔ \(\left\{{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=-1\\3x=1\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(-\dfrac{1}{2}\) < \(\dfrac{1}{3}\)
Vậy \(x\) \(\in\) \(\varnothing\)
a, Nếu 4.|3\(x\) - 1| = |6\(x\) - 2| + |-1,5|
4.|3\(x\) -1| - 2.|3\(x\) - 1| = 1,5
Nếu 3\(x\) - 1 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{1}{3}\)
Ta có: 4.(3\(x\) - 1) - 2.(3\(x\) - 1) = 1,5
12\(x\) - 4 - 6\(x\) + 2 = 1,5
6\(x\) - 2 = 1,5
6\(x\) = 1,5 + 2
6\(x\) = 3,5
\(x\) = 3,5: 6
\(x\) = \(\dfrac{7}{12}\)
Nếu 3\(x\) - 1 < 0 ⇒ \(x\) < \(\dfrac{1}{3}\)
Ta có: - 4.(3\(x\) - 1) = - (6\(x\) - 2) + 1,5
-12\(x\) + 4 + 6\(x\) - 2 = 1,5
-6\(x\) + 2 = 1,5
6\(x\) = 2- 1,5
6\(x\) = 0,5
\(x\) = 0,5 : 6
\(x\) = \(\dfrac{1}{12}\)
Vậy \(x\) \(\in\) {\(\dfrac{1}{12}\); \(\dfrac{7}{12}\)}
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
\(a,\dfrac{1}{2023}>0;-\dfrac{5}{2024}< 0\\ Nên:-\dfrac{5}{2024}< 0< \dfrac{1}{2023}\Rightarrow-\dfrac{5}{2024}< \dfrac{1}{2023}\\ b,\dfrac{678}{876}< 1;\dfrac{987}{789}>1\\ Nên:\dfrac{678}{876}< 1< \dfrac{987}{789}\Rightarrow\dfrac{678}{876}< \dfrac{987}{789}\)
\(c,\dfrac{535353}{585858}=\dfrac{535353:10101}{585858:10101}=\dfrac{53}{58}=1-\dfrac{5}{58}\\ \dfrac{301}{306}=1-\dfrac{5}{306}\\ Vì:\dfrac{5}{58}>\dfrac{5}{306}\Rightarrow1-\dfrac{5}{58}< 1-\dfrac{5}{306}\\ Nên:\dfrac{535353}{585858}< \dfrac{301}{306}\)
\(d,\dfrac{9}{71}=\dfrac{9.3}{71.3}=\dfrac{27}{213}\\ Vì:\dfrac{27}{213}< \dfrac{27}{211}\\ Nên:\dfrac{9}{71}< \dfrac{27}{211}\)
Để so sánh hai biểu thức (27^2024 + 12^2024)^2025 và (27^2025 + 12^2025)^2024, ta sẽ phân tích từng biểu thức để hiểu rõ hơn. 1. Biểu thức đầu tiên: (27^2024 + 12^2024)^2025 Đây là một biểu thức với cơ số 27 và 12 mũ cao (2024) cộng lại rồi nâng lên mũ 2025. Mặc dù cả hai số 27 và 12 đều có mũ lớn (2024), nhưng 27^2024 sẽ lớn hơn rất nhiều so với 12^2024, vì 27 lớn hơn 12. Do đó, 27^2024 là thành phần chi phối trong biểu thức này, và giá trị của (27^2024 + 12^2024) sẽ gần với 27^2024. Sau khi nâng lên mũ 2025, kết quả sẽ chủ yếu bị chi phối bởi (27^2024)^2025 = 27^(2024 * 2025). 2. Biểu thức thứ hai: (27^2025 + 12^2025)^2024 Tương tự, trong biểu thức này, 27^2025 sẽ lớn hơn rất nhiều so với 12^2025. Do đó, (27^2025 + 12^2025) sẽ gần với 27^2025. Sau khi nâng lên mũ 2024, kết quả sẽ chủ yếu bị chi phối bởi (27^2025)^2024 = 27^(2025 * 2024). So sánh các số mũ: Biểu thức đầu tiên có 27^(2024 * 2025). Biểu thức thứ hai có 27^(2025 * 2024). Lưu ý: Vì phép nhân là giao hoán (a * b = b * a), ta thấy rằng 2024 * 2025 = 2025 * 2024, do đó các số mũ trong cả hai biểu thức là bằng nhau. Kết luận: Cả hai biểu thức có cùng dạng số mũ cho cơ số 27 (vì 2024 * 2025 = 2025 * 2024), điều này cho thấy (27^2024 + 12^2024)^2025 = (27^2025 + 12^2025)^2024. Do đó, hai biểu thức này là bằng nhau.
bạn tham khảo nhé