Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (10^2019+7)/(10^2019 + 1) = 1+ (6 / 10 ^2019+1)
B = ( 10 ^ 2020 +9) / ( 10 ^2020 +3) = 1 +( 6 / 10^ 2020 +3)
A -B = (6 / 10 ^2019+1) - (6 / 10^2020 +3) >0
=> A > B
\(\dfrac{-2019}{2019}=-1\)
\(\dfrac{-2021}{2020}=-1,004\)
\(\Rightarrow\dfrac{-2019}{2019}>\dfrac{-2021}{2020}\)
Ta có:
2020/2021 = 20/21 = 100/105
2727/3535 = 27/35 = 81/105
Do 100 > 81 nên 100/105 > 81/105
Vậy 2020/2021 > 2727/3535
Có \(x=\frac{2020}{2019}\) và \(y=\frac{2021}{2020}\). Xét phần hơn
Có \(x-1=\frac{2020}{2019}-1=\frac{2020}{2019}-\frac{2019}{2019}=\frac{1}{2019}\)
Có \(y-1=\frac{2021}{2020}-1=\frac{2021}{2020}-\frac{2020}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Leftrightarrow\frac{2020}{2019}>\frac{2021}{2020}\Rightarrow x>y\)
\(\frac{2020}{2019}\)bé hơn \(\frac{2021}{2020}\)
vì 2020 bé hơn 2021
2019 nhỏ hơn 2020
\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)
\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x>y\)
(-2017)2019 và (-2018)2020
Do số (-2017)2019 có số mũ lẻ nên là số âm
Còn ( -2018)2020 có số mũ chẵn nên là số dương
Ta dễ dàng nhận biết được số âm < số dương
Vậy (-2017)2019 < (-2018)2020
Ta có\(\left(-2017\right)^{2019}=-\left(2017\right)^{2019}< 0\)(1)
\(\left(-2018\right)^{2020}=2018^{2020}>0\)(2)
Từ (1) và (2)\(\Rightarrow\left(-2017\right)^{2019}< \left(-2018\right)^{2020}\)
2021^10 lớn hơn nhé