Cho đa thức

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

a) A + x2 - 4xy2 + 2xz - 3y2 = 0

=> A =  -x2 + 4xy2 - 2xz + 3y2

b) B + 5x2 - 2xy = 6x2 + 9xy - y2

=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2

c) 3xy - 4y2 - A = x2 - 7xy + 8y2

=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2

18 tháng 6 2021

Trả lời:

a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0 

=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2

b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2 

=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2

c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2 

=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2

d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2 

19 tháng 4 2016

Bài 2:

a)Ta có: 4100​=(22)100=2200

Do 2200<2202

Vậy 4100<2202

26 tháng 8 2021

A= 3x3 - (3x -2)x2  - 2x(x+1)

A= 3x3 - 3x3 + 2x2 - 2x2 -2x

A= -2x

Thay x =-20 vào A ta được:

A = -2.(-20) = 40

Vậy A= 40 khi x = -20 

b) C= x(2x+1) - x2(x+2) + x3 -x + 3

C= 2x2 + x - x3 - 2x2 + x3 -x +3

C= (2x2 - 2x2) + (x-x) - (x3 -x3) +3 

C = 3

Vậy C= 3

6 tháng 7 2021

Sửa lại:... :v

Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1

= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1

= -x3 + x2 - x + 1

=> M(x) = 2x2 + 3

N(x) = 2x3 + 2x + 1

Câu c chỉ cần thay số 5 thành số 3 là được nhé!

6 tháng 7 2021

a. P(x) = 2x3 - 2x + x2 - x3 + 3x + 2

= (2x3 - x3) + x2 + (3x - 2x) + 2

= x3 + x2 + x + 2

Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1

= (3x3 - 4x3) + (5x2 - 4x2) + (3x - 4x) + 1

= -x3 + x2 - x + 3

b. M(x) = P(x) + Q(x)

= x3 + x2 + x + 2 - x3 + x2 - x + 3

= (x3 - x3) + (x2 + x2) + (x - x) + (2 + 3)

= 2x2 + 5

N(x) = P(x) - Q(x)

= x3 + x2 + x + 2 - (- x3 + x2 - x + 3)

= x3 + x2 + x + 2 + x3 - x2 + x - 3

= (x3 + x3) + (x2 - x2) + (x + x) + (2 - 3)

= 2x3 + 2x - 1

c. Ta có: 2x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 2x2 + 5 > 0

\(\Rightarrow\) Đa thức M(x) vô nghiệm   (đpcm)

NM
9 tháng 9 2021

ta có :

\(2A=2+2^2+2^3+..+2^{100}=\left(1+2+2^2+..+2^{99}\right)+2^{100}-1=A+2^{100}-1\)

Vậy \(A=2^{100}-1=4^{50}-1\) nên \(A< 4^{50}\)

b, ta có : \(4^{50}\equiv1mod3\Rightarrow A=4^{50}-1\text{ chia hết cho 3}\)

còn : \(2^{100}=2.2^{99}=2.\left(2^3\right)^{33}=2.8^{33}\equiv2mod7\)

nên \(A=2^{100}-1\equiv1mod7\text{ hay A không chia hết chho 7}\)

DD
7 tháng 7 2021

\(B=3+3^3+3^5+...+3^{101}\)

\(3^2.B=3^3+3^5+3^7+...+3^{103}\)

\(\left(3^2-1\right)B=\left(3^3+3^5+3^7+...+3^{103}\right)-\left(3+3^3+3^5+...+3^{101}\right)\)

\(8B=3^{103}-3\)

\(B=\frac{3^{103}-3}{8}\)

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

25 tháng 7 2021

Thu gọn và sắp xếp các hạng tử của đa thức A(x) = x5 + x3 - x2 + 2x3 -525

A. A(x) = x5 + x3 - x2 -1                                      B. A(x) = x5 - x3 + x2 -1

C. A(x) = x5 + 3x3 - x2                                         D. A(x) = x5 + 3x3 - x2 -1