Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x=0\)
\(\Leftrightarrow x\left(x^2+1\right)=0\)
thấy :x2+1>0 loại
suy ra x=0
b: Xét tứ giác ABKC có
D là trung điểm của BC
D là trung điểm của AK
Do đó: ABKC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABKC là hình chữ nhật
\(5x\left(x-1\right)-3\left(1-x\right)=0\)
\(5x\left(x-1\right)+3\left(x-1\right)=0\)
\(\left(5x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=1\end{matrix}\right.\)
Vậy...
\(5x\left(x-1\right)-3\left(1-x\right)=0\)
<=> \(5x\left(x-1\right)+3\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(5x+3\right)=0\)
<=> \(\left[{}\begin{matrix}x-1=0\\5x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b,c: góc FAE+góc FHE=180 độ
=>FAEH nội tiếp
=>góc HFE=góc HAE=góc C
Xét ΔHFE vuông tại H và ΔHCA vuông tại H có
góc HFE=góc HCA
=>ΔHFE đồng dạng với ΔHCA
=>HF/HC=HE/HA
=>HF*HA=HC*HE
\(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)
\(P=\frac{\sqrt{4\left(a+3\right)}+\sqrt{4\left(b+3\right)}+\sqrt{4\left(c+3\right)}}{2}\le\frac{a+b+c+21}{4}\le6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có
\(\left(1+\sqrt{15}\right)^2=16+2\sqrt{15}< 16+2\sqrt{16}=16+8=24\)
Ta lại có \(\sqrt{24}^2=24\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
Bài làm
Ta có: ( 1 + V15 )2 = 1 + 15 + 2 V15 = 16 + 2V15
V24 2 = 24 = 16 + 8
Vì V152 = 15 < 16 = 42
Nên V15 < 4
=> 2V15 < 8
=> 16 + 2V15 < 24
=> ( 1 + V15 )2 < V24 2
Vậy 1 + V15 < V24
# Chúc bạn học tốt #