Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 2x2 + 10x - 15
= 2x2 + 10x - \(\frac{50}{4}-\frac{5}{2}\)
= 2(x2 + 5x - \(\frac{25}{4}\)) - \(\frac{5}{2}\)
= 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\)
Mà ; 2(x - \(\frac{5}{2}\) )2 \(\ge0\forall x\)
Nên : 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\) \(\ge-\frac{5}{2}\forall x\)
Vậy Amin = \(-\frac{5}{2}\) , dấu bằng xảy ra khi x = \(\frac{5}{2}\)
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x=9.15=135\)
1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)\(\Leftrightarrow x\left(x+2\right)-\left(x-2\right)=2\)
\(\Leftrightarrow x^2+2x-x+2=2\)\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=0\)không thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x.\left(x+2\right)-\left(x-2\right)}{\left(x-2\right).x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x^2-2x}=\frac{2}{x^2-2x}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy \(S=\left\{-1;0\right\}\)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
a) \(A=\left(x^2-10x+25\right)\)\(-28\)
\(A=\left(x-5\right)^2-28\)\(>=\)-28
MinA = -28 <=> x-5=0 <=> x=5
b)\(B=-\left(x^2+2x+1\right)+6\)
\(B=-\left(x+1\right)^2+6\)\(< =\)6
MaxB = 6 <=> x+1=0 <=> x=-1
c)\(C=-5\left(x^2-\frac{6}{5}x+\frac{9}{25}\right)-\frac{26}{5}\)
\(C=-5\left(x-\frac{3}{5}\right)^2-\frac{26}{5}\)\(< =-\frac{26}{5}\)
MaxC = \(-\frac{26}{5}\)<=> \(x-\frac{3}{5}=0\)<=> x=\(\frac{3}{5}\)
d)\(D=-3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{61}{12}\)
\(D=-3\left(x+\frac{1}{6}\right)^2+\frac{61}{12}\)\(< =\frac{61}{12}\)
MacD = \(\frac{61}{12}\)<=> \(x+\frac{1}{6}=0\)<=> \(x=\frac{-1}{6}\)
Đúng thì nhớ tích cho minh nha
\(\left(x^2-5\right)\left(x+2\right)+5x=2x^2+17\)
\(\Leftrightarrow x^2\left(x+2\right)-5\left(x+2\right)+5x-2x^2-17=0\)
\(\Leftrightarrow x^3+2x^2-5x-10+5x-2x^2-17=0\)
\(\Leftrightarrow x^3-3^3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+9\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\x^2+3x+9=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\left(tm\right)\\\left(x+\frac{3}{2}\right)^2+\frac{27}{4}>0\left(loai\right)\end{array}\right.\)
M.n giúp mk nhanh nka!
Vì mk gửi câu hỏi bị lỗi nên nhờ Nguyễn Hoàng Gia Bảo đăng giúp
B = 5x - x2
B = -x2 + 5x
-B = x2 - 5x
-4B = 4x2 - 20x
-4B = (2x-5)2 -25
B = -(2x-5)2 / 4 + 6,25
GTLN của B = 6,25 <=> 2x-5 = 0 => x = 5/2
A = 2x2 + 10x - 1
2A = 4x2 + 20x - 2
2A = (2x+5)2 - 27
A = (2x+5)2 / 2 - 13,5
GTNN của A là -13,5 <=> 2x+5 = 0 => x = -5/2