\(a^2+b^2+c^2=3\) .Tìm GTLL của \(P=\sqrt{a+3}+\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

\(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)

\(P=\frac{\sqrt{4\left(a+3\right)}+\sqrt{4\left(b+3\right)}+\sqrt{4\left(c+3\right)}}{2}\le\frac{a+b+c+21}{4}\le6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

6 tháng 7 2016

Trả lời hộ mình đi

15 tháng 12 2017

Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)

\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)

\(\Leftrightarrow ab+bc+ca\le3\)

\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Đến đây dễ rồi để YẾN tự làm

5 tháng 6 2018

Áp dụng BĐT AM-GM

\(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}\)

\(\sqrt[3]{\left(b+c\right).\frac{2}{3}.\frac{2}{3}}\le\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}\)

\(\sqrt[3]{\left(c+a\right).\frac{2}{3}.\frac{2}{3}}\le\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)

\(\Rightarrow S.\sqrt[3]{\frac{2}{3}.\frac{2}{3}}\le\frac{2\left(a+b+c\right)+\frac{2}{3}.6}{3}=\frac{2.1+4}{3}=2\)

\(\Leftrightarrow S\le2:\sqrt[3]{\frac{4}{9}}=\frac{2.\sqrt[3]{9}}{\sqrt[3]{4}}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a,b,c>0\\a+b+c=1\\a+b=b+c=c+a=\frac{2}{3}\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)

Vậy...

5 tháng 6 2018

Sử dụng BĐT AM-GM ta có: 

\(\sqrt[3]{a+b}=\frac{\sqrt[3]{\frac{2}{3}.\frac{2}{3}.\left(a+b\right)}}{\sqrt[3]{\frac{4}{9}}}\le\frac{\frac{2}{3}+\frac{2}{3}+a+b}{3.\sqrt[3]{\frac{4}{9}}}\)

Tương tự cộng lại suy ra 

\(S\le\frac{6.\frac{2}{3}+2\left(a+b+c\right)}{3.\sqrt[3]{\frac{4}{9}}}=\frac{6}{3.\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

24 tháng 5 2021

a, \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}\right)^2-2\sqrt{10}+1}=\sqrt{\left(\sqrt{10}+1\right)^2}\)

\(=\left|\sqrt{10}+1\right|=\sqrt{10}+1\)

b, \(\sqrt{27-10\sqrt{2}}=\sqrt{5^2-10\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(5-\sqrt{2}\right)^2}\)

\(=\left|5-\sqrt{2}\right|=5-\sqrt{2}\)

c, \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

làm nốt 2 câu cuối nhé, cách làm y trên 

25 tháng 5 2021

d/\(\sqrt{9+4\sqrt{5}}\)

\(\sqrt{2^2+4\sqrt{5}+\left(\sqrt{5}\right)^2}\)

=\(\sqrt{\left(2+\sqrt{5}\right)^2}\)

\(\left|2+\sqrt{5}\right|\)

=  \(2+\sqrt{5}\)

e/ \(\sqrt{21+4\sqrt{5}}\)

\(\sqrt{20+4\sqrt{5}+1}\)

=\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1^2}\)

=\(\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(\left|2\sqrt{5}+1\right|\)

\(2\sqrt{5}+1\)

26 tháng 6 2017

\(A=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)

\(\sqrt[3]{\frac{4}{9}}A=\sqrt[3]{\frac{4}{9}}.\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)\)

\(\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}+\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}+\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)

\(=\frac{4}{3}+\frac{2}{3}\left(a+b+c\right)=2\)

\(\Rightarrow A\le\frac{2}{\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

26 tháng 6 2017

Áp dụng BĐT Holder ta có:

\(A^3=\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)^3\)

\(\le\left(1+1+1\right)\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=9\cdot2\left(a+b+c\right)=9\cdot2=18\)

\(\Rightarrow A^3\le18\Rightarrow A\le\sqrt[3]{18}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)