Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)
\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)
\(\Leftrightarrow ab+bc+ca\le3\)
\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)
Đến đây dễ rồi để YẾN tự làm
Áp dụng BĐT AM-GM
\(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{\left(b+c\right).\frac{2}{3}.\frac{2}{3}}\le\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{\left(c+a\right).\frac{2}{3}.\frac{2}{3}}\le\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\Rightarrow S.\sqrt[3]{\frac{2}{3}.\frac{2}{3}}\le\frac{2\left(a+b+c\right)+\frac{2}{3}.6}{3}=\frac{2.1+4}{3}=2\)
\(\Leftrightarrow S\le2:\sqrt[3]{\frac{4}{9}}=\frac{2.\sqrt[3]{9}}{\sqrt[3]{4}}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a,b,c>0\\a+b+c=1\\a+b=b+c=c+a=\frac{2}{3}\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
Vậy...
Sử dụng BĐT AM-GM ta có:
\(\sqrt[3]{a+b}=\frac{\sqrt[3]{\frac{2}{3}.\frac{2}{3}.\left(a+b\right)}}{\sqrt[3]{\frac{4}{9}}}\le\frac{\frac{2}{3}+\frac{2}{3}+a+b}{3.\sqrt[3]{\frac{4}{9}}}\)
Tương tự cộng lại suy ra
\(S\le\frac{6.\frac{2}{3}+2\left(a+b+c\right)}{3.\sqrt[3]{\frac{4}{9}}}=\frac{6}{3.\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
a, \(\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}\right)^2-2\sqrt{10}+1}=\sqrt{\left(\sqrt{10}+1\right)^2}\)
\(=\left|\sqrt{10}+1\right|=\sqrt{10}+1\)
b, \(\sqrt{27-10\sqrt{2}}=\sqrt{5^2-10\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(5-\sqrt{2}\right)^2}\)
\(=\left|5-\sqrt{2}\right|=5-\sqrt{2}\)
c, \(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
làm nốt 2 câu cuối nhé, cách làm y trên
d/\(\sqrt{9+4\sqrt{5}}\)
= \(\sqrt{2^2+4\sqrt{5}+\left(\sqrt{5}\right)^2}\)
=\(\sqrt{\left(2+\sqrt{5}\right)^2}\)
= \(\left|2+\sqrt{5}\right|\)
= \(2+\sqrt{5}\)
e/ \(\sqrt{21+4\sqrt{5}}\)
= \(\sqrt{20+4\sqrt{5}+1}\)
=\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}+1^2}\)
=\(\sqrt{\left(2\sqrt{5}+1\right)^2}\)
= \(\left|2\sqrt{5}+1\right|\)
= \(2\sqrt{5}+1\)
\(A=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
\(\sqrt[3]{\frac{4}{9}}A=\sqrt[3]{\frac{4}{9}}.\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)\)
\(\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}+\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}+\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)
\(=\frac{4}{3}+\frac{2}{3}\left(a+b+c\right)=2\)
\(\Rightarrow A\le\frac{2}{\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Holder ta có:
\(A^3=\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)^3\)
\(\le\left(1+1+1\right)\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=9\cdot2\left(a+b+c\right)=9\cdot2=18\)
\(\Rightarrow A^3\le18\Rightarrow A\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
\(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)
\(P=\frac{\sqrt{4\left(a+3\right)}+\sqrt{4\left(b+3\right)}+\sqrt{4\left(c+3\right)}}{2}\le\frac{a+b+c+21}{4}\le6\)
Dấu "=" xảy ra khi \(a=b=c=1\)