K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2022

So sánh với \(\dfrac{2010}{2011}\) à bạn?

Ta có: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}>\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}>1\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2010}>1\)

Mà \(\dfrac{2010}{2011}< 1\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2010}>\dfrac{2010}{2011}\)

19 tháng 5 2016

a=1/2.2+1/3.3+1/4.4+...+1/2009.2009+1/2010.2010(có 2009 số hạng)

a=1+1+1+...+1+1(2009 số 1)

a=1.2009=2009

Vậy a>1

18 tháng 3 2023

https://scratch.mit.edu/projects/782275470 

5 tháng 11 2021

lấy máy tính ra mà tính chứ tui ko có

7 tháng 6 2019

Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)

Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.

7 tháng 6 2019

Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)

\(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(1-\frac{1}{2011}\)

\(\frac{2010}{2011}\)

23 tháng 7 2019

\(B=\frac{\left(2007\cdot2009\right)+2007}{\left(2007\cdot2009\right)+2009}\)

\(B=\frac{2007}{2009}< 1\)

Vậy B<1

( chấm là nhân nhé)

nhớ ti ck đấy

5 tháng 6 2018

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2009}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2010}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2010}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2005}\right)\)

\(\Rightarrow A=\frac{1}{2006}+\frac{1}{2007}+...+\frac{1}{2010}\)

\(\Rightarrow\frac{A}{\frac{1}{2006}+\frac{1}{2007}+...+\frac{1}{2010}}=1\)

5 tháng 6 2018

Bạn Phạm Tuấn Đạt làm đúng rồi 

Dấu \(.\)là dấu nhân 

Đặt \(A=\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

       \(B=\frac{1}{2006}+\frac{1}{2007}+...+\frac{1}{2010}\)

Ta có : 

\(A=\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(\Rightarrow A=\left(1+\frac{1}{3}+...+\frac{1}{2009}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2010}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}+\frac{1}{2010}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{2010}\right)\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2005}\right)\)

\(\Rightarrow A=\frac{1}{2006}+\frac{1}{2007}+...+\frac{1}{2010}\)

\(\Rightarrow A=B\)

Nên : 

\(\frac{A}{B}=\frac{A}{A}=1\)

Vậy giá trị của biểu thức trên là \(1\)

13 tháng 5 2018

Ta có : 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2009}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2010}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2009}+\frac{1}{2010}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{2010}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1005}\right)\)

\(=\frac{1}{1006}+\frac{1}{1007}+...+\frac{1}{2010}\)