K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

bằng nhau nhé với cả hỏi ngu thế

NV
2 tháng 1 2024

\(P=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\) với \(x\ge0\)

Ta có: \(P-1=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}-1=\dfrac{\sqrt{x}-2-2\sqrt{x}-1}{2\sqrt{x}+1}=-\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}\)

Do \(\sqrt{x}\ge0;\forall x\ge0\)

\(\Rightarrow\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}>0\Rightarrow-\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}< 0\)

\(\Rightarrow P-1< 0\Rightarrow P< 1\)

5 tháng 5 2019

sử dụng phương pháp miền giá trị

5 tháng 5 2019

bạn nói rõ hơn được không?

18 tháng 12 2023

ĐKXĐ: x>=0

\(P-1=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}-1\)

\(=\dfrac{\sqrt{x}-2-2\sqrt{x}-1}{2\sqrt{x}+1}=\dfrac{-\sqrt{x}-3}{2\sqrt{x}+1}\)

\(=-\dfrac{\left(\sqrt{x}+3\right)}{2\sqrt{x}+1}< 0\)

=>P<1

31 tháng 7 2016

 Ta có S = 1/11+1/12+1/13+...+1/19+1/20 nên S có 10 số hạng 
Và 1/2 = 10/20 = 
Mà 1/11 > 1/12 > 1/13 > 1/14 > 1/15 > 1/16 > 1/17 > 1/18 > 1/19 > 1/20 
Nên 1/11+1/12+1/13+...+1/19+1/20 > 1/20x10 
=> 1/11+1/12+1/13+...+1/19+1/20 > 10/20 
=> 1/11+1/12+1/13+...+1/19+1/20 > 1/2 
Vậy S > 1/2

10 tháng 7 2023

ĐK: \(x\ge0\)

Lấy P - 1

\(\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}-1\)

\(=\dfrac{\sqrt{x}-2-2\sqrt{x}-1}{2\sqrt{x}+1}\)

\(=\dfrac{-\sqrt{x}-3}{2\sqrt{x}+1}\)

\(=\dfrac{-\left(\sqrt{x}+3\right)}{2\sqrt{x}+1}\)

Ta thấy \(\left\{{}\begin{matrix}\sqrt{x}+3>0\\2\sqrt{x}+1>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-\left(\sqrt{x}+3\right)< 0\\2\sqrt{x}+1>0\end{matrix}\right.\Rightarrow P-1< 0\)

Vậy \(P< 1\).

10 tháng 7 2023

cảm ơn anh Lộc ạ

1 tháng 8 2016

\(P-5=\frac{2x+2}{\sqrt{x}}-3=\frac{2x-3\sqrt{x}+2}{\sqrt{x}}=\frac{2\left(x-2\sqrt{x}+1\right)+\sqrt{x}}{\sqrt{x}}=\frac{2\left(\sqrt{x}-1\right)^2}{\sqrt{x}}+1>0\)

\(\Rightarrow P>5\)

15 tháng 7 2021

Ta có: \(\sqrt{1+\sqrt{2+\sqrt{3}}}=\sqrt{1+\sqrt{\dfrac{4+2\sqrt{3}}{2}}}=\sqrt{1+\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}}\)

\(=\sqrt{1+\dfrac{\sqrt{3}+1}{\sqrt{2}}}=\sqrt{\dfrac{\sqrt{2}+\sqrt{3}+1}{\sqrt{2}}}\)

\(\Rightarrow\) cần so sánh \(\sqrt{\dfrac{\sqrt{2}+\sqrt{3}+1}{\sqrt{2}}}\) với 2

Bình phương 2 vế (cả 2 vế đề không âm nên bình phương được)

\(\Rightarrow\) cần so sánh \(\dfrac{\sqrt{2}+\sqrt{3}+1}{\sqrt{2}}\) với 4

\(\Rightarrow\) cần so sánh \(\sqrt{2}+\sqrt{3}+1\) với \(4\sqrt{2}\)

\(\Rightarrow\) cần so sánh \(\sqrt{3}+1\) với \(3\sqrt{2}\)

Ta có; \(3\sqrt{2}=2\sqrt{2}+\sqrt{2}=\sqrt{8}+\sqrt{2}\)

Vì \(\left\{{}\begin{matrix}8>3\\2>1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{8}>\sqrt{3}\\\sqrt{2}>\sqrt{1}\end{matrix}\right.\Rightarrow\sqrt{8}+\sqrt{2}>\sqrt{3}+1\)

\(\Rightarrow\sqrt{1+\sqrt{2+\sqrt{3}}}< 2\)