Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố, Ta xét:
+) p=2 => 2p3+5=2.23+5=21 (loại vì 21 chia hết cho 7)
+) p=3 => p3-6=33-6=21 (loại vì 21 chia hết cho 7)
+) p=5 => p3-6=53-6=119 (loại vì 119 chia hết cho 7)
+) p=7 => p3-6=73-6=337 và 2p3+5=2.73+5=691. Vì 337 và 691 đều là số nguyên tố nên p=7 thỏa mãn đề bài.
+) p>7. Xét p=7k+1, ..., 7k+6 (đều chia 7 dư 13,...,63)
Bài bạn ấy làm đúng rồi
Làm tiếp
________________________________
Với p = 7k + 1 ta có: \(2p^3+5=2\left(7k+1\right)^3+5\equiv2.1+5\equiv0\left(mod7\right)\)=>\(2p^3+5⋮7\)loại
Với p = 7k+2 ta có: \(2p^3+5=2\left(7k+2\right)^3+5\equiv2.2^3+5\equiv0\left(mod7\right)\)=> \(2p^3+5⋮7\)loại
Với p = 7k + 3 ta có: \(p^3-6=\left(7k+3\right)^3-6\equiv3^3-6\equiv0\left(mod7\right)\)=> loại
Với p = 7k + 4 ta có: \(2p^3+5=2\left(7k+4\right)^3+5\equiv2.4^3+5\equiv0\left(mod7\right)\)=> loại
Với p = 7k + 5 ta có: \(p^3-6=\left(7k+5\right)^3-6\equiv5^3-6\equiv0\left(mod7\right)\)=> loại
Với p = 7k + 6 ta có: \(p^3-6=\left(7k+6\right)^3-6\equiv6^3-6\equiv0\left(mod7\right)\)=> loại
Vậy chỉ có p = 7 thỏa mãn
khi đó: p^2+ 10 = 59 là số nguyên tố.( đpcm)
1.
\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)
\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số
2.
\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)
\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)
\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)
\(\Leftrightarrow...\)
Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.
p(p-1)=(q-1)(q-2) (*)
=> p | q-1 hoặc p | q-2
do p nguyên tố, (q-1;q-2)=1
1.Nếu p|q-1 thì p <= q-1
Từ (*) suy ra p-1>=q-2
=> p>=q-1
Do đó p=q-1
Mà p,q nguyên tố nên p=2,q=3
Khi đó p^2+q^2=13 là số nguyên tố
2.Xét p|q-2
Từ (*) => q-2 > 0
Lập luận tương tự TH1 dẫn tới mâu thuẫn
Với p=2=>4+2018=2022(bỏ)
=>p>2
Với p=3=>9+2018=2027=>6p^2+2015=2069(tm)
Với p>3=>p^2:3 dư 1=>p^2 có dạng 3k+1
Ta có p^2:3 dư 1, 2018:3 dư 2 =>p^2+2018 chia hết cho 3(bỏ)
Vậy p=3 nhá bạn